排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
利用2016年182d的MODIS 3km AOD数据与地面监测数据,评估了混合效应模型不同参数组合的模拟性能,得出模型在解释AOD-PM2.5关系时,对时间序列变异的解释能力要比空间差异更佳.在此基础上,利用混合效应模型建立京津冀地区每日的AOD-PM2.5关系,模型拟合R2为0.92,交叉验证调整R2为0.85,均方根误差(RMSE)为12.30 μg/m3,平均绝对误差(MAE)为9.73 μg/m3,说明模型拟合精度较高.基于此模型估算的2016年京津冀地区年均PM2.5浓度为42.98 μg/m3,暖季(4月1日~10月31日)为43.35 μg/m3,冷季(11月1日~3月31日)为38.52 μg/m3,与同时期的地面监测数据差值分别为0.59,0.7,5.29 μg/m3.空间上,京津冀地区的PM2.5浓度呈现南高北低的特征,有一条明显的西南-东北走向的高值区.研究结果表明,基于每日混合效应模型可以准确评估京津冀地区的地面PM2.5浓度,且模型估算的PM2.5浓度分布状况为区域大气污染防治提供了基础的数据支撑. 相似文献
12.
13.
基于AOD数据与GWR模型的2016年新疆地区PM2.5和PM10时空分布特征 总被引:1,自引:0,他引:1
PM2.5与PM10的时空分布特征及其相关性是大气颗粒物研究的主要内容,传统方法是基于监测站点数据进行分析,难以揭示PM2.5与PM10时空分布的区域特征.为此,本文利用地理加权回归模型估算了2016年新疆地区PM2.5与PM10的月均浓度,在此基础上对区域尺度的PM2.5与PM10浓度特征进行分析.结果表明:地理加权回归相较最小二乘回归的拟合精度更高,PM2.5和PM10的决定系数分别为0.93和0.96,且误差较小;PM2.5和PM10年均浓度分别为70.88 μg·m-3和194.53 μg·m-3,说明大气颗粒物污染严重,且空间分布呈西南高、东北低的特征;PM2.5和PM10季节浓度均为春季最高,夏季最低;PM2.5月均浓度2月最高,9月最低,PM10月均浓度3月最高,8月最低;PM2.5与PM10年均浓度的相关系数r为0.95,相关性较高;PM2.5/PM10冬季最高为51%,其余季节小于50%,说明冬季PM2.5对大气颗粒物污染贡献率较高,其余季节则以可吸入颗粒物中的粗颗粒贡献为主. 相似文献
14.
华北地区植被覆盖变化及其影响因子的相对作用分析 总被引:8,自引:0,他引:8
利用GIMMS NDVI数据和气象数据,采用趋势分析、残差分析和相对作用分析对华北地区1981—2006 年植被覆盖时空变化特征进行了分析,并计算了气候变化和人类活动在植被覆盖变化过程中的相对作用.结果表明,1981—2006 年华北地区植被NDVI呈现显著上升趋势,其增加速率为0.009/10 a,但却存在着明显的空间差异,且植被NDVI退化区域面积大于改善区域面积;华北地区植被覆盖变化与干燥度指数和气温有很好的相关性,说明气候变化是影响植被覆盖变化的重要因素;此外,无论在华北地区植被改善区域还是退化区域,人类活动起到的作用都占据了主导地位.在植被改善区,人类活动的相对作用为68.10%,大于气候变化的相对作用(31.90%),在植被退化区,人类活动的相对作用为71.88%,也远大于气候变化的相对作用(28.12%),且气候变化和人类活动的相对作用大小在不同空间位置上表现不同. 相似文献
15.
不同时间尺度气象要素与空气污染关系的KZ滤波研究 总被引:1,自引:0,他引:1
空气污染状况受气象要素和污染源排放的共同影响,为了评估大气污染控制措施的效果,需将由污染源排放的浓度数据分离出来.本文利用KZ滤波方法将天津市6个监测站点2015~2017年逐日的O3、PM2.5和PM10浓度资料和6个同期气象数据分解为长期分量、短期分量和季节分量,计算各分量对原始时间序列方差的贡献.采用逐步回归法建立O3及颗粒物3种分量与相应尺度气象要素的线性模型.结果表明,上述3种污染物浓度数据经分解后,季节分量对总方差贡献最大,其次为短期分量;气温和相对湿度是影响O3季节和短期分量的主要气象因素,其中温度占主导地位,且呈现正相关,与相对湿度呈负相关;风速、气压、降水与颗粒物的短期及季节浓度变化呈负相关,相对湿度与之呈正相关,温度与短期分量呈正相关、与季节分量的变化呈负相关;经逐步回归消除气象影响的PM10的长期分量有波动下降的趋势,PM2.5浓度在2017年年初有所上升,其余部分有下降趋势,O3长期分量浓度有所上升;这几年间颗粒物污染控制措施的效果较为显著,O3污染有所加重. 相似文献
16.
内蒙古植被覆盖变化及其与气候、人类活动的关系 总被引:21,自引:3,他引:21
植被覆盖状况是评估生态环境的重要指标。利用GIMMS数据集的8 km分辨率的NDVI数据和气候数据,对内蒙古地区1982—2000年植被覆盖变化进行了分析,并评估了降水与该地区植被的相关关系,在此基础上探讨了人类活动对内蒙古地区植被覆盖变化的影响。研究中采用了相关分析和残差分析,结果表明,在过去19年中内蒙古地区植被NDVI总体上呈轻微上升趋势,且存在着显著的空间差异。同时内蒙古地区植被NDVI与降水有很好的相关性,植被受降水的影响较大。此外,人类活动对内蒙古一些地区的植被变化也起到了建设或破坏的作用。 相似文献