首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   8篇
  国内免费   28篇
安全科学   10篇
废物处理   1篇
环保管理   11篇
综合类   58篇
基础理论   25篇
污染及防治   10篇
评价与监测   7篇
社会与环境   2篇
灾害及防治   6篇
  2024年   2篇
  2023年   9篇
  2022年   6篇
  2021年   2篇
  2020年   4篇
  2019年   8篇
  2018年   9篇
  2017年   15篇
  2016年   5篇
  2015年   8篇
  2014年   13篇
  2013年   4篇
  2012年   6篇
  2011年   7篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
71.
环境问题日益严峻,越来越多的人开始关注环境,环保热情急剧上升.作为制度安排的环境保护公众参与法律制度,应贯穿于环境法律实施的全过程.  相似文献   
72.
文章首先阐述了环境保护档案管理的发展现状和主要存在的问题,然后提出针对性的对策与措施,尤其是对如何科学、合理地开发利用环保档案信息资源,使环保档案的收集、管理、利用逐步走向信息化道路进行了思考和阐述。  相似文献   
73.
王蕾  苏杨  栾晓峰 《自然资源学报》2009,24(8):1497-1508
目前,对主体功能区划分中作为起点的禁止开发区的确定标准存在谬误:直接衔接现有保护区域,将资源价值、功能和保护需要不同的各类保护区域等同视之并忽视了我国各类保护区域在管理中存在的问题。从合理性和可行性角度分析,目前的保护区域既无必要也无可能都作为禁止开发区,即便其中保护要求相对较严的自然保护区亦然。建议在划分禁止开发区时细致考虑各类保护区域特点:或者重新拟定禁止开发区的确定标准,和其他功能区的划分一样通过一套指标体系来确定;或者理顺保护区域管理体系并解决保护区域在分类、土地权属和规模等方面的问题后,再将其与主体功能区划中的禁止开发区标准衔接。  相似文献   
74.
加强新污染物治理是贯彻落实习近平生态文明思想的重要举措,标志着我国生态环境保护工作向质量目标管理与风险防控并重转变。本文较为系统地剖析了我国新污染物治理面临的技术挑战,包括毒性数据缺失、危害测试与评估技术发展缓慢,环境暴露评估技术相对落后,新污染物环境监测基础能力明显不足,新污染物替代和风险管控技术发展滞后等方面;从科技支撑层面,提出了设立新污染物治理科技专项、集中突破关键技术瓶颈,整合现有资源、打造国家新污染物研究领域的科技战略力量,构建国家新污染物环境监测网络,加强新污染物治理工程试点示范和科技成果应用推广等建议,以期为我国的新污染物治理提供参考。  相似文献   
75.
微波辅助光催化降解阿特拉津的表观动力学   总被引:1,自引:0,他引:1  
廖文超  徐苏  王蕾  严滨  宋一 《环境工程学报》2014,8(7):2719-2724
以内分泌干扰物阿特拉津为目标物,建立循环流化床微波辅助光催化体系,研究其微波辅助光催化降解规律。表观动力学研究发现,当阿特拉津初始浓度较低时,其在微波辅助光催化体系中的降解符合表观一级反应动力学特征。降解反应速率常数与阿特拉津初始浓度呈负线性相关,与紫外光强呈正线性相关,与催化剂浓度呈抛物线性相关。表观反应速率常数kobs=3.95×10-4c-0.27030I1.2224W0.3283,该模型计算值与实验值吻合较好,平均相对偏差仅为0.5%,可用于预测微波辅助光催化降解低浓度有机污染物的反应规律。  相似文献   
76.
采用上流式固定床反应器,在常温下连续运行,考察MnO2对海洋性ANAMMOX菌富集培养的影响,其中接种的海洋海底沉积物采自大连市附近海域。结果表明,在反应器运行近150d中,加入MnO2的R1反应器的最大总氮去除速率为137.82gN/(m3·d),比没有加人MnO2的R2反应器高出近20gN/(m3·d)。在低温环境(10~15℃)运行时,R1反应器的氨氮和亚硝氮去除率比R2反应器均高出10%,且Rl反应器对温度变化的适应性和运行稳定性都好于R2反应器。这表明MnO2的加入确实在一定程度上促进了海洋性ANAMMOX细菌的富集,并增强了ANAMMOX反应器对温度变化的适应性,使其能够在较宽的温度范围下运行。  相似文献   
77.
蓝藻水华优势藻高效防控铜制剂的筛选   总被引:2,自引:0,他引:2  
在对比络合铜、有机铜和无机铜3类5种典型铜制剂对蓝藻水华优势藻--铜绿微囊藻(Microcystis aeruginosa)和2种非靶标藻种--普通小球藻(Chlorella vulgaris)和斜生栅藻(Scenedesmus obliquus)的96 h生长抑制效果的基础上,进一步开展了3类铜制剂抑制铜绿微囊藻生长的15 d延长效应研究.试验结果表明,质量分数为25%的络氨铜水剂、30%琥胶肥酸铜可湿性粉剂和20%乙酸铜可湿性粉剂对蓝藻水华优势种有较好的生长抑制效果,其对初始密度为2×105~4×105mL-1铜绿微囊藻的96 h半抑制浓度(以下均以有效成分的质量计)分别为0.03、0.06和0.05 mg·L-1,且初始藻密度对抑藻效果并无明显影响.试验质量浓度为0.25 mg·L-1的25%络氨铜水剂、0.30 mg·L-1的30%琥胶肥酸铜可湿性粉剂或0.20 mg·L-1的20%乙酸铜可湿性粉剂均能抑制铜绿微囊藻增长,且在0~15 d内都不会出现藻细胞再次复苏和增长.此外,由于铜制剂对铜绿微囊藻的96 h半抑制浓度远低于其对普通小球藻和斜生栅藻的96 h半抑制浓度,因此可在有效控制靶标藻种的同时不对非靶标藻种的生长造成严重威胁.络氨铜、琥胶肥酸铜、乙酸铜有望被开发成为高效、绿色的蓝藻水华控制剂.  相似文献   
78.
沣河水系脱氮微生物群落结构研究   总被引:4,自引:0,他引:4  
河流水体氮素的超负荷不仅破坏了水体生态环境,也严重威胁着人类的生存和发展.水体中有机氮、无机氮(氨氮、亚硝氮、硝氮)和分子氮之间的转化(氮循环)有赖于水体中大量的氮循环微生物(固氮细菌、硝化细菌和反硝化细菌),然而这些氮循环微生物的生长繁殖也受到包括氮素的形态和浓度在内的多种环境因子的影响,这些因素也通过影响氮循环微生物的生长繁殖进而使得水体中氮素的转化速率发生变化,对水体氮污染的防治有不可忽视的作用.本研究通过在沣河设置不同的研究断面,采集水体样品,进行水质分析,并通过现代分子生物学技术(PCR-DGGE)方法对研究断面水体中氮循环微生物(固氮细菌、硝化细菌和反硝化细菌)的群落结构进行分析.再通过统计学软件对所得分子生物学信息与水质环境因子的相关性进行统计学分析,发现沣河水体中氮循环微生物群落结构受到多种环境因子共同影响,且在枯水期和丰水期表现出不同的特征.在丰水期沣河水体中,硝化细菌群落在中游表现出较高的多样性和丰富性,这与沣河中上游农业COD(化学需氧量)、BOD(生化需氧量)氨氮及有机氮污染物排放量较大,沣河水体DO(溶解氧)高有关.水体中的氨氮、亚硝氮、温度的增加是促进水体中硝化细菌的均匀性和丰富度的增高的主要因子,而pH 值的升高,使得水体中硝化细菌的均匀性和丰富度降低.反硝化微生物在中游和下游的多样性和丰富度较高,与有机物及硝酸盐含量相关.水体中的BOD、COD、TP(总磷)、硝氮的增加是促进水体中反硝化细菌的均匀性和丰富度的增高主要相关因子,而DO 的增多则会对部分反硝化细菌产生不利影响,使得水体中反硝化细菌的均匀性和丰富度降低.本研究结果为沣河以及其他河流的污染控制以及基于微生物的生态修复提供了科?  相似文献   
79.
以125 W高压汞灯为光源,研究了水中17α-乙炔基雌二醇(EE2)在铁(Ⅲ)-草酸盐(Ox)配合物体系中的光降解;考察了初始pH,c(Fe(Ⅲ))/c(Ox)配比及EE2初始质量浓度对EE2光降解的影响.结果表明:铁(Ⅲ)-草酸盐体系能引发EE2的光降解.在pH为3.50,c(Fe(Ⅲ))/c(Ox)为10.0/120.0时,光照160min;ρ(EE2)为2.0mg/L时的EE2光降解效率可达53.5%.在pH为3.00~6.00的实验范围内,当pH为3.00~4.00时,EE2的光降解效率最高;在ρ(EE2)为2.0~10.0 mg/L时,EE2的光降解效率随溶液中初始ρ(EE2)的增加而降低.   相似文献   
80.
拉林河水环境质量现状与污染源分析研究   总被引:2,自引:0,他引:2  
为了解拉林河流域的水环境质量及污染物来源,在平水期,对拉林河干流沿线进行现场勘查及断面水质监测。结果表明:拉林河上游沙河子镇断面水质呈Ⅰ类~Ⅱ类(除总氮外),中游五常市下游断面呈Ⅲ类~劣Ⅴ类,下游入松花江口断面呈Ⅲ类~Ⅳ类。拉林河黑龙江省境内沿河村镇每年排放的生活污水、垃圾、畜禽粪污、化肥、农药产生的CODcr、氨氮、总氮、总磷的贡献量分别为10万吨、1.69万吨、2.96万吨、2 881吨。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号