首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   62篇
  国内免费   125篇
安全科学   63篇
废物处理   6篇
环保管理   21篇
综合类   282篇
基础理论   55篇
污染及防治   49篇
评价与监测   45篇
社会与环境   12篇
灾害及防治   20篇
  2024年   9篇
  2023年   14篇
  2022年   31篇
  2021年   24篇
  2020年   24篇
  2019年   24篇
  2018年   30篇
  2017年   24篇
  2016年   15篇
  2015年   25篇
  2014年   39篇
  2013年   26篇
  2012年   15篇
  2011年   19篇
  2010年   16篇
  2009年   23篇
  2008年   22篇
  2007年   19篇
  2006年   15篇
  2005年   8篇
  2004年   12篇
  2003年   16篇
  2002年   12篇
  2001年   4篇
  2000年   5篇
  1999年   8篇
  1998年   6篇
  1997年   3篇
  1996年   7篇
  1995年   8篇
  1994年   6篇
  1993年   10篇
  1992年   1篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
51.
提出了一套基于神经网络分类器的城市污水处理厂水力负荷冲击预警系统,以期对进水水量骤增现象进行提前1天的预报,使污水处理厂可根据预报结果提前采取水力冲击防护措施,从而保证各单元的平稳运行.根据进水水量的涨幅将某污水处理厂12年日进水水量监测数据分为"常规"和"冲击"两类,重点对"冲击"数据进行提前1天的预测,并采用冲击漏报率、冲击误报率和报准率对模型的预测精度进行评价;同时,基于同样的建模方法和不同的训练、验证样本建立了N(1)、N(2)和N(3)3个平行模型,以对模型的鲁棒性和建模方法的可重复性进行考察.结果显示,3个模型对2010年、2011年和2012年3年测试样本的预测效果良好,冲击漏报率和报准率两项指标数值均较为稳定,分别在0~0.167和0.981~0.995之间浮动,冲击误报率虽然在数值上的浮动较大,最低为0.143,最高为0.500,平均为0.310,但仍在工程上的可承受范围内.该结果表明,本研究基于神经网络分类器所建立的3个神经网络模型预测精度高、鲁棒性好,显示出良好的性能,有望为污水处理厂水力冲击防护工作提供有力参考.  相似文献   
52.
油气生产作业存在较大的安全风险,为保证石油生产作业的安全性,基于油气生产作业的风险情况,提出了油气生产调研方法,通过现场诊断发现了油气生产产生风险的原因,书面审查分析了不同作业类型的风险因素,访谈交流发现了管理要求和模式的弊端。针对油气生产高危作业风险调研情况,提出了高危作业分类分级管理措施,确保了油气生产作业安全有序进行,实现了油气生产作业风险控制,提高了油气的生产效率。  相似文献   
53.
基于Fluent对压缩空气泡沫在长距离管道中的流动特性进行了数值模拟研究,将压缩空气泡沫近似为弥散流,采用Saplart-Allmaras模型模拟了不同管径下压缩空气泡沫以及不同泡沫原液浓度的AFFF泡沫在长距离管道内的流动及压降变化。模拟结果表明,随着距离变化,各管径管道内压降均呈现线性变化,且随着压缩空气泡沫的流动,压降线性增大。管道管径对管内压降变化具有显著影响,管道直径越小,管道内压降越大;泡沫原液浓度对压降的影响较小,且压缩空气泡沫在长距离输送中的压力随距离线性衰减。将模拟结果与长距离输送的试验结果进行了对比,误差在10%以内。  相似文献   
54.
伴随着我国经济发展和城镇化进程,固体废物产生呈强度高、利用不充分的状态,造成了严重的资源浪费和环境污染. 随着风险意识的加强,准确评估固体废物的环境风险,已经成为确定固体废物管控目标、边界、优先序的重要基础. 由于固体废物的特性复杂、处理链条长、流动过程受区域发展特征的影响,其环境风险呈现风险因子多元、空间异质性强、不确定性高、易产生长期累积性风险等规律. 现有的固体废物环境风险评估大多基于源项分析,针对特定环节或设施开展定量或半定量的污染物暴露与健康风险评估,缺乏对全过程的系统性分析,无法从全局及区域上综合评估固体废物的环境风险水平. 因此,本文提出固体废物全过程精细化环境风险评估框架,包括固体废物全生命周期路径梳理及特征识别、风险因子及其释放转运过程辨析、受体的最大可接受环境风险水平评估、基于多评价指标的固体废物环境风险的量化,以期为实现固体废物环境风险精细化管控提供支撑.   相似文献   
55.
用硫酸改性的粉煤灰作为吸附剂,处理含铬(Ⅵ)为5mg/L地下水,最佳条件为:pH=2,液固比10000:3,25℃下反应3h。处理后水样铬(VI)浓度0.03mg/L,满足(GB/T 14848-93)《地下水环境质量标准》。在不改变原水pH条件下,增加粉煤灰用量,水样中铬(VI)浓度也可由5mg/L降至0.05mg/L。同时,吸附剂对铬(VI)的吸附符合Freundlich和Langmuir等温线。  相似文献   
56.
长三角典型站点冬季大气PM2.5中OC、EC污染特征   总被引:1,自引:0,他引:1  
康晖  朱彬  王红磊  施双双 《环境科学》2018,39(3):961-971
对2015年1月9日~2015年1月31日临安、南京和苏州3个站点采集的PM_(2.5)样品(共计279组),使用热光反射法(thermal/optical reflectance,TOR)分析了样品中有机碳(OC)与元素碳(EC)的含量,并研究了长三角地区冬季PM_(2.5)中OC和EC的污染特征.结果表明,采样期间临安、南京和苏州的PM_(2.5)平均质量浓度分别为(123.56±61.11)、(144.77±62.91)和(156.5±68.97)μg·m-3,均超过我国《环境空气质量标准》(GB 3095-2012)规定的PM_(2.5)日均值75μg·m-3;其中3个站点OC与EC的平均质量浓度依次分别为(21.93±11.69)/(6±3.6)、(20.32±10.3)/(5.39±3.07)和(27.08±14.35)/(6.4±4.29)μg·m-3.临安作为长三角大气环境背景点,OC与EC的污染也较为严重.3个站点OC与EC的相关性为临安(R2=0.83)、南京(R2=0.72)和苏州(R2=0.72),表明冬季长三角地区的碳质气溶胶的来源较为一致和稳定.3个站点样品中的OC/EC值均大于2.0,样品的OC/EC值主要分布在2.5~6.0这个区间内,表明燃煤源和机动车尾气排放源是OC与EC的主要来源.使用EC示踪法估算临安、南京和苏州3个站点的二次有机碳(SOC)平均质量浓度分别为(9.23±5.26)、(6.82±4.36)和(12.56±7.52)μg·m-3,在OC中占比为42%、34%和46%,表明SOC是OC的重要组成部分.后向轨迹显示,PM_(2.5)、OC和EC的质量浓度与主要气团的传输路径有较好的相关性,自空气质量较差区域气团的PM_(2.5)、OC和EC的质量浓度是来自空气质量较好区域的1.14~1.7倍、1.55~2.1倍和1.94~2.47倍.  相似文献   
57.
使用MARGA离子在线分析仪ADI 2080对2017年12月27日~2018年1月5日南京市PM2.5化学组分进行连续采样分析,结合气象要素和大气环境监测数据,探讨了霾污染过程中水溶性离子的时间分布特征及其来源特征.结果表明:霾日中南京水溶性离子浓度为121.41μg/m3,是洁净日的3.2倍.霾污染过程中水溶性离子平均浓度大小顺序为NO3- > SO42- > NH4+ > Cl- > K+ > Ca2+ > Mg2+,SNA离子占总水溶性离子浓度的91.97%.霾日中水溶性离子日变化均为三峰型,洁净日中Cl-、SO42-和NH4+的日变化为单峰型,Ca2+为双峰型,K+、Mg2+为三峰型.随着空气污染状况的加重,总水溶性离子在PM2.5中的占比不断减少,空气质量为优时占比95.93%,严重污染时为63.25%.霾日中随着污染加重,NH4+占总离子的比例稳定在23%左右,SO42-占比缓慢减小,NO3-占比不断增大.NOR、SOR的日变化在霾日呈双峰型分布,洁净日则较为平稳.观测期间的水溶性离子主要来源有二次转化、煤烟尘、扬尘以及生物质燃烧.  相似文献   
58.
实施排污总量控制的技术关键,就是建立源与目标即污染源排放量与河流水质之间的输入响应关系。本文以《海河流域新乡市段水污染防治规划》为例,介绍了水质模型与实测值相结合建立输入响应关系的方法,并对建立关系过程中遇到的有关问题进行了讨论。  相似文献   
59.
60.
本文介绍了目前国内外油港油气污染防治技术现状及所存在的问题,并对我国目前油港油气污染的防治技术及方案提出了建议和设想。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号