首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1729篇
  免费   16篇
  国内免费   71篇
安全科学   76篇
废物处理   189篇
环保管理   190篇
综合类   172篇
基础理论   283篇
环境理论   2篇
污染及防治   655篇
评价与监测   166篇
社会与环境   67篇
灾害及防治   16篇
  2023年   21篇
  2022年   37篇
  2021年   37篇
  2020年   17篇
  2019年   31篇
  2018年   47篇
  2017年   58篇
  2016年   85篇
  2015年   43篇
  2014年   72篇
  2013年   145篇
  2012年   107篇
  2011年   122篇
  2010年   97篇
  2009年   110篇
  2008年   122篇
  2007年   109篇
  2006年   102篇
  2005年   88篇
  2004年   86篇
  2003年   57篇
  2002年   65篇
  2001年   47篇
  2000年   21篇
  1999年   12篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   7篇
  1994年   5篇
  1993年   7篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1971年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有1816条查询结果,搜索用时 180 毫秒
51.
This paper discusses about the quantitative effect of windbreak fences on wind velocity in the reclaimed land at Saemangeum in South Korea. Windbreak fences were constructed in the reclaimed land to reduce the wind velocity to prevent the generation and diffusion of dust. However, up to this time, no in-depth studies were conducted to quantitatively measure the effect of the windbreak fences on wind velocity thus an optimum windbreak structure is not yet determined. Using CFD simulations, the effects of fence porosity, fence height, and the distance between the adjacent fences were investigated. A wind tunnel experiment was initially conducted and data gathered were used to develop the CFD models. From the experiments and CFD simulations, the overall percentage difference of the measured velocities was 7.20% which is generally acceptable to establishing the reliability of the CFD models. The reduction effect on wind velocity was measured in between the adjacent fences up to a height of 0.6 m from the ground surface. In terms of porosity ( = 0, 0.2, 0.4, 0.6), 0.2 was found to be the optimum value. Conversely, the effect of fence height (0.6, 0.8 and 1.0 m) showed no significant difference; therefore, 0.6 m height is recommended. In addition, the reduction effect of distance between the adjacent fences (2, 4 and 6 m) on wind velocity having a 0.2 porosity has decreased to about 75% regardless of the distance. In the case of the reclaimed land in Saemangeum, a decrease of 75% can prevent the generation and diffusion of dusts. However, the source of dusts is very large. Therefore, constructing an array of windbreak with 6 m distance between them is deemed necessary.  相似文献   
52.
Passive air samplers (PAS) can be used to monitor semi-volatile organic compounds in the atmosphere. Polyurethane foam (PUF) disks are a popular sampling medium because they have a high retention capacity for such compounds. This paper reports a highly time-resolved uptake study, to derive uptake rate data under field conditions, and investigate the effects of using different foam densities on the uptake rate. PUF disks were deployed alongside an active sampler, for periods of up to 12 weeks. The uptake rates were measured for a range of gas- and particle-bound persistent organic pollutants (polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs)), of different properties, to explore whether gas–particle partitioning affected uptake rate. Uptake rates for two different densities of foam (0.021 and 0.035 g cm?3) were not statistically significantly different from each other. Uptake rates of light PCBs averaged ~6.5 m3 day?1, somewhat higher than in previous studies; higher wind speeds and lower temperatures in this study are the likely reason for this difference. The study showed: i) the uptake rate of the compound with lowest KOA considered in this study (PCB-28/31) declined in the later weeks, indicating an approach to equilibrium; ii) uptake rates of lighter BDEs and heavier PCBs (compounds of intermediate KOA in this study) remain similar throughout the study period, indicating that they are not approaching equilibrium during the 12-week-study; iii) uptake rates were typically: ~8 m3 day?1 for PCB-52; ~9.5 m3 day?1 for PCB-95; ~11 m3 day?1 for BDE-28 and ~2 m3 day?1 BDE-99. The latter compound has an important particle-bound component and this lowers the sampling rate compared to predicted uptake rates for compounds which are in the gas phase only. It is shown that knowledge of gas–particle partitioning is needed to correct for this effect, and to improve predicted uptake rates.  相似文献   
53.
This study reports on the effect of microwave radiation for inactivation of Ascaris lumbricoides eggs in 25 g of soil compared to ultraviolet irradiation and ozone expose. Microwave radiation at 700 W with 14% water content (w/w) achieved approximately 2.5 log inactivation of eggs in soil within 60 s. On the other hand, UV irradiation at 3 mW cm−2 with and without shaking soil for 3600 s achieved approximately 0.32 and 0.01 log inactivation of eggs, respectively. In ozone treatment, 0.13 log inactivation of eggs was achieved with 5.8 ± 0.7 mg L−1 of dissolved ozone dose for 30 min in a continuous diffusion reactor. In addition, the inactivation of eggs by three disinfection techniques was conducted in water in order to compare the inactivation efficiency of eggs in soil. The inactivation efficiency of microwave radiation was found to be no significant difference between in soil and water. However, the inactivation efficiency of UV irradiation was significantly increased in water while in ozone expose there was no significant difference between in soil and water. Microwave treatment thus proved to be the most efficient method in controlling A. lumbricoides eggs in soil.  相似文献   
54.
The geochemical behavior of As in porewaters of an alkaline coal ash disposal site was investigated using multilevel samplers. The disposal site was in operation from 1983 until 1994 and was covered with 0.3–0.5 m thick soils in 2001 when this study was initiated. Sequential extraction analyses and batch leaching experiments were also performed using the coal ash samples collected from the disposal site. The results suggest the important roles of siderite (FeCO3) precipitation/dissolution and soil cover, which have been ignored previously. Arsenic levels in the porewater were very low (average of 10 μg L−1) when the site was covered with soil due to coprecipitation with siderite. The soil cover enabled the creation of anoxic conditions, which raised the Fe concentration by the reductive dissolution of Fe-(hydr)oxides. Because of the high alkalinity generated from the alkaline coal ash, even a small increase in the Fe concentration (0.66 mg L−1 on average) could cause siderite precipitation. When the soil cover was removed, however, an oxidizing condition was created and triggered the precipitation of dissolved Fe as (hydr)oxides. As a result, the dissolution of previously precipitated As-rich siderite caused higher As concentration in the porewater (average of 345 μg L−1).  相似文献   
55.
The objectives of this study were to quantitatively estimate the distribution of arsenic with its speciation and to identify potential pathways for transformation of arsenic species from samples of water, sediments, and plants in the ecosystem affected by the Cheongog Spring, where As(V) concentration reached levels up to 0.270 mg L−1. After flowing about 100 m downstream, the arsenic level showed a marked reduction to 0.044 mg L−1 (about 84% removal) without noticeable changes in major water chemistry. The field study and laboratory hydroponic experiments with the dominant emergent plants along the creek (water dropwort and thunbergian smartweed) indicated that arsenic distribution, reduction, and speciation appear to be controlled by, (i) sorption onto stream sediments in exchangeable fractions, (ii) bioaccumulation by and possible release from emergent plants, and (iii) transformation of As(V) to As(III) and organic species through biological activities.  相似文献   
56.
Printed circuit boards incorporated in most electrical and electronic equipment contain valuable metals such as Cu, Ni, Au, Ag, Pd, Fe, Sn, and Pb. In order to employ a hydrometallurgical route for the recycling of valuable metals from printed circuit boards, a mechanical pre-treatment step is needed. In this study, the metallic components from waste printed circuit boards have been enriched using a mechanical separation process. Waste printed circuit boards shredded to <10mm were milled using a stamp mill to liberate the various metallic components, and then the milled printed circuit boards were classified into fractions of <0.6, 0.6-1.2, 1.2-2.5, 2.5-5.0, and >5.0mm. The fractions of milled printed circuit boards of size <5.0mm were separated into a light fraction of mostly non-metallic components and a heavy fraction of the metallic components by gravity separation using a zig-zag classifier. The >5.0mm fraction and the heavy fraction were subjected to two-step magnetic separation. Through the first magnetic separation at 700 Gauss, 83% of the nickel and iron, based on the whole printed circuit boards, was recovered in the magnetic fraction, and 92% of the copper was recovered in the non-magnetic fraction. The cumulative recovery of nickel-iron concentrate was increased by a second magnetic separation at 3000 Gauss, but the grade of the concentrate decreased remarkably from 76% to 56%. The cumulative recovery of copper concentrate decreased, but the grade increased slightly from 71.6% to 75.4%. This study has demonstrated the feasibility of the mechanical separation process consisting of milling/size classification/gravity separation/two-step magnetic separation for enriching metallic components such as Cu, Ni, Al, and Fe from waste printed circuit boards.  相似文献   
57.
Methane (CH(4)), which is one of the most abundant anthropogenic greenhouse gases, is produced from landfills. CH(4) is biologically oxidized to carbon dioxide, which has a lower global warming potential than methane, when it passes through a cover soil. In order to quantify the amount of CH(4) oxidized in a landfill cover soil, a soil column test, a diffusion cell test, and a mathematical model analysis were carried out. In the column test, maximum oxidation rates of CH(4) (V(max)) showed higher values in the upper part of the column than those in the lower part caused by the penetration of O(2) from the top. The organic matter content in the upper area was also higher due to the active microbial growth. The dispersion analysis results for O(2) and CH(4) in the column are counter-intuitive. As the upward flow rate of the landfill gas increased, the dispersion coefficient of CH(4) slightly increased, possibly due to the effect of mechanical dispersion. On the other hand, as the upward flow rate of the landfill gas increased, the dispersion coefficient of O(2) decreased. It is possible that the diffusion of gases in porous media is influenced by the counter-directional flow rate. Further analysis of other gases in the column, N(2) and CO(2), may be required to support this hypothesis, but in this paper we propose the possibility that the simulations using the diffusion coefficient of O(2) under the natural condition may overestimate the penetration of O(2) into the soil cover layer and consequently overestimate the oxidation of CH(4).  相似文献   
58.
Biochemical methane potential (BMP) assays, typically used to assess anaerobic biodegradability of liquid wastes with added nutrients and bacteria, were adapted to compare hydrolysis of lignocellulosic material under sulfidogenic and methanogenic environments. A method based on selective inhibition of microorganism activity, by 3% toluene, was used to measure the hydrolysis rate of lignocellulosic material and the accumulation of sugar. The neutral sugars, galactose, glucose, and xylose, which were released from lignocellulosic material such as office paper and newspaper in the presence 3% toluene, clearly accumulated over time under sulfidogenic conditions. The accumulation rates of sugars, glucose, and xylose, were higher in the sulfidogenic condition than in the methanogenic condition, indicating a faster degradation of lignocellulosic materials under the sulfidogenic condition.  相似文献   
59.
This study is aimed at exploring the characteristics of fatal occupational injuries in Korea’s construction industry and comparing the causes in various occupations within that industry. There were 10,276 fatal occupational injury victims in Korea over 8 years (1997–2004). The mortality risk due to injuries in construction and non-construction industries was calculated, and their causes were compared. The number of victims of fatal occupational injuries in the construction industry was 4333 (42.2% of the total fatal occupational injuries), and the 1 year mortality risk was higher (23.7/100,000 persons) than in non-construction industries (10.4). Falling was the most frequent (52.7%) cause of fatal injuries. In addition, deaths due to structural collapse and electric shock were significantly higher than in other industries. When the distribution of the causal factors in various occupations within the construction industry was investigated, some factors appeared more frequently in certain occupations than in others. As the construction industry encompasses a large proportion of occupational injuries, a reduction in this field alone will substantially contribute to an overall reduction of occupational injuries in Korea. Further research for effective prevention is needed.  相似文献   
60.
Studies on quantitative soil contamination due to heavy metals were carried out in Katedan Industrial Development Area (KIDA), south of Hyderabad, Andhra Pradesh, India under the Indo-Norwegian Institutional Cooperation Programme. The study area falls under a semi-arid type of climate and consists of granites and pegmatite of igneous origin belonging to the Archaean age. There are about 300 industries dealing with dyeing, edible oil production, battery manufacturing, metal plating, chemicals, etc. Most of the industries discharge their untreated effluents either on open land or into ditches. Solid waste from industries is randomly dumped along roads and open grounds. Soil samples were collected throughout the industrial area and from downstream residential areas and were analysed by X-ray Fluorescence Spectrometer for fourteen trace metals and ten major oxides. The analytical data shows very high concentrations of lead, chromium, nickel, zinc, arsenic and cadmium through out the industrial area. The random dumping of hazardous waste in the industrial area could be the main cause of the soil contamination spreading by rainwater and wind. In the residential areas the local dumping is expected to be the main source as it is difficult to foresee that rain and wind can transport the contaminants from the industrial area. If emission to air by the smokestacks is significant, this may contribute to considerable spreading of contaminants like As, Cd and Pb throughout the area. A comparison of the results with the Canadian Soil Quality Guidelines (SQGL) show that most of the industrial area is heavily contaminated by As, Pb and Zn and local areas by Cr, Cu and Ni. The residential area is also contaminated by As and some small areas by Cr, Cu, Pb and Zn. The Cd contamination is detected over large area but it is not exceeding the SQGL value. Natural background values of As and Cr exceed the SQGL values and contribute significantly to the contamination in the residential area. However, the availability is considerably less than anthropogenic contaminants and must therefore be assessed differently. The pre- and post-monsoon sampling over two hydrological cycles in 2002 and 2003 indicate that the As, Cd and Pb contaminants are more mobile and may expect to reach the groundwater. The other contaminants seem to be much more stable. The contamination is especially serious in the industrial area as it is housing a large permanent residing population. The study not only aims at determining the natural background levels of trace elements as a guide for future pollution monitoring but also focuses on the pollution vulnerability of the watershed. A plan of action for remediation is recommended.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号