首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   8篇
  国内免费   8篇
安全科学   30篇
废物处理   14篇
环保管理   74篇
综合类   36篇
基础理论   65篇
环境理论   1篇
污染及防治   74篇
评价与监测   20篇
社会与环境   17篇
灾害及防治   6篇
  2022年   1篇
  2020年   5篇
  2019年   1篇
  2018年   5篇
  2017年   6篇
  2016年   8篇
  2015年   9篇
  2014年   12篇
  2013年   30篇
  2012年   8篇
  2011年   18篇
  2010年   25篇
  2009年   11篇
  2008年   18篇
  2007年   19篇
  2006年   26篇
  2005年   12篇
  2004年   14篇
  2003年   11篇
  2002年   14篇
  2001年   6篇
  2000年   6篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   7篇
  1995年   6篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有337条查询结果,搜索用时 171 毫秒
121.
Structuring sustainability science   总被引:2,自引:2,他引:0  
It is urgent in science and society to address climate change and other sustainability challenges such as biodiversity loss, deforestation, depletion of marine fish stocks, global ill-health, land degradation, land use change and water scarcity. Sustainability science (SS) is an attempt to bridge the natural and social sciences for seeking creative solutions to these complex challenges. In this article, we propose a research agenda that advances the methodological and theoretical understanding of what SS can be, how it can be pursued and what it can contribute. The key focus is on knowledge structuring. For that purpose, we designed a generic research platform organised as a three-dimensional matrix comprising three components: core themes (scientific understanding, sustainability goals, sustainability pathways); cross-cutting critical and problem-solving approaches; and any combination of the sustainability challenges above. As an example, we insert four sustainability challenges into the matrix (biodiversity loss, climate change, land use changes, water scarcity). Based on the matrix with the four challenges, we discuss three issues for advancing theory and methodology in SS: how new synergies across natural and social sciences can be created; how integrated theories for understanding and responding to complex sustainability issues can be developed; and how theories and concepts in economics, gender studies, geography, political science and sociology can be applied in SS. The generic research platform serves to structure and create new knowledge in SS and is a tool for exploring any set of sustainability challenges. The combined critical and problem-solving approach is essential.  相似文献   
122.
Radical chemistry in the nocturnal urban boundary layer is dominated by the nitrate radical, NO3, which oxidizes hydrocarbons and, through the aerosol uptake of N2O5, indirectly influences the nitrogen budget. The impact of NO3 chemistry on polluted atmospheres and urban air quality is, however, not well understood, due to a lack of observations and the strong impact of vertical stability of the boundary layer, which makes nocturnal chemistry highly altitude dependent.Here we present long-path DOAS observations of the vertical distribution of the key nocturnal species O3, NO2, and NO3 during the TRAMP experiment in Summer 2006 in Houston, TX. Our observations confirm the altitude dependence of nocturnal chemistry, which is reflected in the concentration profiles of all trace gases at night. In contrast to other study locations, NO3 chemistry in Houston is dominated by industrial emissions of alkenes, in particular of isoprene, isobutene, and sporadically 1,3-butadiene, which are responsible for more than 70% of the nocturnal NO3 loss. The nocturnally averaged loss of NOx in the lowest 300 m of the Houston atmosphere is ~0.9 ppb h?1, with little day-to-day variability. A comparison with the daytime NOx loss shows that NO3 chemistry is responsible for 16–50% of the NOx loss in a 24-h period in the lowest 300 m of the atmosphere. The importance of the NO3 + isoprene/1,3-butadiene reactions implies the efficient formation of organic nitrates and secondary organic aerosol at night in Houston.  相似文献   
123.
Laboratory-based relationships that model the phytotoxicity of metals using soil properties have been developed. This paper presents the first field-based phytotoxicity relationships. Wheat (Triticum aestivum L.) was grown at 11 Australian field sites at which soil was spiked with copper (Cu) and zinc (Zn) salts. Toxicity was measured as inhibition of plant growth at 8 weeks and grain yield at harvest. The added Cu and Zn EC10 values for both endpoints ranged from approximately 3 to 4760 mg/kg. There were no relationships between field-based 8-week biomass and grain yield toxicity values for either metal. Cu toxicity was best modelled using pH and organic carbon content while Zn toxicity was best modelled using pH and the cation exchange capacity. The best relationships estimated toxicity within a factor of two of measured values. Laboratory-based phytotoxicity relationships could not accurately predict field-based phytotoxicity responses.  相似文献   
124.
Tolhurst LE  Barry J  Dyer RA  Thomas KV 《Chemosphere》2007,68(8):1519-1524
The effect of resuspending sediment contaminated with Irgarol 1051 based antifouling paint particles on the green macroalga Ulva intestinalis was examined. U. intestinalis was also exposed to sediment spiked with Irgarol 1051. The macroalga were exposed over 21 days to the resuspension of sediments containing 61.2 mg kg(-1) of antifouling paint particles containing Irgarol 1051 that provided aqueous Irgarol 1051 concentrations of approximately 0.3 microg l(-1), Irgarol 1051 and appropriate controls. The growth response was compared with that for 'clean' sediment. Resuspension of sediment was associated with reduced growth when compared to seawater alone. Resuspension of sediment spiked with Irgarol 1051 was associated with a greater reduction in growth, with growth being significantly reduced when sediment containing antifouling paint particles was resuspended. The data suggest that the prolonged disturbance of sediments containing antifouling paint particles in marinas represents a potential and as yet unquantified hazard to photosynthetic organisms.  相似文献   
125.
A preliminary laboratory study was conducted to investigate the impact of different residual types and sediment surface roughness on copper contaminant fluxes to the water column. Sediments from Torch Lake, Michigan served as the test samples. These sediments are mining by‐products with elevated Cu levels. Six experiments were run during which the sediments were conditioned to simulate different forms of residuals. During these experiments, the water column above the sediments was circulated via peristaltic pumping or orbital shaking and the total and dissolved Cu levels were monitored periodically for 15 days. Dissolved Cu levels indicated that during the first 48 hr the water column concentrations approached equilibrium for all six cases. Total Cu levels increased with time and did reach equilibrium but were more susceptible to fluctuations in water column suspended solids levels. Analysis of the resulting dissolved Cu data indicated that the resulting water column Cu concentrations differed with sediment surface and residual type. The highest dissolved Cu water column concentrations were observed for a roughened surface with a larger surface area. The lowest water column dissolved Cu levels were observed for the case with sediment slurry placed over clean sand. The dissolved Cu levels in the water column for all six simulated conditions were several orders higher than the USEPA ambient water quality criteria for protection of aquatic life. © 2014 Wiley Periodicals, Inc.*  相似文献   
126.
127.
Possibilities abound for organizing an effective plastics recycling industry. Whatever is done to waste plastic requires some knowledge of what the materials are and an understanding that any mixing, inadvertent or deliberate, will not destroy the material's usefulness. If all polymers could be changed back to monomers, the net result would be that polymers of a thousand different types could be reduced to less than a dozen types of monomer for well over 95 percent of plastic waste. If the cost of depolymerization is less than the current monomer price, the economics of depolymerization is an obvious advantage. Polymerization and depolymerization are both controlled by thermodynamics and kinetics. The paradigm is to discriminate one plastic formulation from another. If the properties are close and selection assured, then direct reuse may be possible. In all other cases, we must use a chemical process where the choices are few and the selection is easy.  相似文献   
128.
Barry G. Oliver 《Chemosphere》1985,14(8):1087-1106
The desorption of 20 chlorinated organics from sediments has been studied using a nitrogen purge/Tenax trap system for separating the “dissolved” and “sorbed” fractions in sediment/water slurries. The desorption partition coefficient, KD, was found to decrease with increasing temperature and suspended sediment concentration. While some differences in KD and desorption rates were observed for the study chemicals, considering their wide range of physical/chemical properties such as KOW, these changes were small. Desorption half-lives averaged about 60d at 4°C, 40d at 20°C and 10d at 40°C under continuous gaseous purging. Estimates of the loadings of chemicals via desorption from bottom sediments in Lake Ontario are compared to loadings of these chemicals to the lake from the Niagara River.  相似文献   
129.
130.

We present an assessment of the plausible Paris-aligned fair share nett cumulative carbon dioxide (CO2) quota for an example nation state, the Republic of Ireland. By Paris-aligned, we mean consistent with the Paris Agreement adopted at the 21st Conference of the Parties to the United Nations Framework Convention on Climate Change, at Paris, France, in December 2015 (UNFCCC 2015). We compare and contrast this quota with both the aspirations expressed in the current Irish National Policy Position and current national emission projections. The fair share quota is assessed as a maximum of c. 391 million tonnes of carbon dioxide (MtCO2), equal to 83 tonnes of carbon dioxide (tCO2) per capita, from 2015, based on a precautionary estimate of the global carbon budget (GCB) and specific interpretation of global equity. Given Ireland’s high current CO2 per capita emission rate, this would correspond to sustained year-on-year reductions in nett annual CO2 emissions of over ??11% per year (beginning as of 2016). By contrast, the CO2 mitigation target indicated in the National Policy Position corresponds to nett annual reduction rates in the range of only ?4.7% per year (low ambition) up to a maximum of ??8.3% per year (high ambition), and projections based on current and immediately planned mitigation measures indicate the possibility, instead, of sustained increases in emissions at a rate of the order of +?0.7% per year. Accordingly, there is a large gap between Paris-aligned ambition and current political and policy reality on the ground, with a significant risk of early emergence of “CO2 debt” and tacit reliance on rapid deployment of currently speculative (at a relevant scale and feasible cost) negative CO2 emission technologies to actively remove CO2 from the atmosphere. While the detailed policy situation will clearly differ from country to country, we suggest that this methodology, and its CO2debt framing, may be usefully applied in other individual countries or regions. We recommend that such framing be incorporated explicitly into a global mitigation strategy via the statements of nationally determined contributions required to be submitted and updated by all parties under the Paris Agreement processes.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号