首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   642篇
  免费   10篇
  国内免费   1篇
安全科学   20篇
废物处理   15篇
环保管理   209篇
综合类   54篇
基础理论   156篇
污染及防治   150篇
评价与监测   23篇
社会与环境   22篇
灾害及防治   4篇
  2023年   3篇
  2021年   7篇
  2020年   6篇
  2019年   9篇
  2018年   6篇
  2017年   8篇
  2016年   25篇
  2015年   14篇
  2014年   23篇
  2013年   61篇
  2012年   29篇
  2011年   26篇
  2010年   15篇
  2009年   24篇
  2008年   22篇
  2007年   26篇
  2006年   17篇
  2005年   19篇
  2004年   28篇
  2003年   26篇
  2002年   18篇
  2001年   19篇
  2000年   13篇
  1999年   7篇
  1998年   16篇
  1997年   6篇
  1996年   8篇
  1994年   16篇
  1993年   11篇
  1992年   5篇
  1991年   8篇
  1990年   12篇
  1989年   7篇
  1988年   8篇
  1987年   6篇
  1986年   11篇
  1985年   7篇
  1984年   6篇
  1983年   10篇
  1982年   8篇
  1981年   8篇
  1980年   10篇
  1979年   5篇
  1978年   6篇
  1977年   5篇
  1976年   4篇
  1975年   2篇
  1973年   3篇
  1972年   2篇
  1967年   2篇
排序方式: 共有653条查询结果,搜索用时 109 毫秒
561.
In this paper, continuous production of hydrogen through fermentation with liquid swine manure as substrate was researched using a semi-continuously fed fermenter (8 L in total volume and 4 L in working volume). The pH and temperature for the fermenter were controlled at 5.3 ± 0.1 and 35 ± 1°C, respectively, throughout the experiment. Three hydraulic retention times (16, 20, and 24 h) were investigated for their impact on the efficiency and performance of the fermenter in terms of hydrogen yields. The results indicate that hydraulic retention time (HRT) has a strong influence on the fermenter performance. An increasing HRT would increase the variation in hydrogen concentration in the offgas. To produce hydrogen with a fairly consistent concentration, the HRT of the fermenter should not exceed 16 h, which, however, did not appear to be short enough to control methanogenesis because the offgas still contained about 5% methane. When methane content in the offgas exceeded 2%, an inverse linear relationship between hydrogen and methane was observed with a correlation coefficient of 0.9699. To increase hydrogen content in the offgas, methane production has to be limited to below 2%. Also, keeping oxygen content in the fermenter below 1.5% would increase the hydrogen concentration to over 15%. The product to substrate ratio was found to be around 50% for the fermenter system studied, evidenced by the observation that for every 6 liters of manure fermented, 3 liters of pure hydrogen were produced, which was significant and encouraging.  相似文献   
562.
563.
Principles of probability survey design were applied to guide large-scale sampling of populations of stony corals and associated benthic taxa in the Florida Keys coral reef ecosystem. The survey employed a two-stage stratified random sampling design that partitioned the 251-km(2) domain by reef habitat types, geographic regions, and management zones. Estimates of the coefficient of variation (ratio of standard error to the mean) for stony coral population density and abundance ranged from 7% to 12% for four of six principal species. These levels of survey precision are among the highest reported for comparable surveys of marine species. Relatively precise estimates were also obtained for octocoral density, sponge frequency of occurrence, and benthic cover of algae and invertebrates. Probabilistic survey design techniques provided a robust framework for estimating population-level metrics and optimizing sampling efficiency.  相似文献   
564.
Objective: Low bone quality is a contributing factor to motor vehicle crash (MVC) injury. Quantification of occupant bone mineral density (BMD) is important from an injury causation standpoint. The first aim of this study was to validate a technique for measuring lumbar volumetric BMD (vBMD) from phantomless computed tomography (CT) scans. The second aim was to apply the validated phantomless technique to quantify lumbar vBMD in Crash Injury Research and Engineering Network (CIREN) occupants for correlation with age, fracture incidence, and osteopenia/osteoporosis diagnoses.

Methods: Quantitative CT (qCT) and dual-energy X-ray absorptiometry (DXA) were collected prospectively for 50 subjects and used to validate a technique to measure vBMD from 281 phantomless CT scans of CIREN occupants. Hounsfield unit (HU) measurements were collected from the L1–L5 vertebrae, right psoas major muscle, and anterior subcutaneous fat for all subjects and from 3 phantom ports with known mg/cc calcium hydroxyapatite values for the validation group. qCT calibration was accomplished using regressions between the phantom HU and mg/cc values to convert L1–L5 HU values to mg/cc. A phantomless calibration technique was developed where the fat and muscle HU values were linearly regressed against fat (?69 mg/cc) and muscle (77 mg/cc) to establish a conversion for L1–L5 HU measurements to mg/cc. vBMD calculated from qCT versus the phantomless method was compared for the 50 subjects to assess agreement and a mg/cc osteopenia threshold was established using DXA T-scores. CIREN HU measurements were converted to mg/cc using the phantomless technique and the mg/cc osteopenia threshold was used to compare vBMD to age, fracture incidence, and osteopenia comorbidity classifications in CIREN.

Results: Linear regression of lumbar vBMD derived from the qCT versus phantomless calibrations showed excellent agreement (R2 = 0.87, P <.0001). A 145 mg/cc threshold for osteopenia was established (sensitivity = 1, specificity = 0.57) and 44 CIREN occupants had vBMD below this threshold. Of these 44 occupants, 64% were not classified as osteopenic in CIREN, but vBMD suggested undiagnosed osteopenia. Age was negatively correlated with vBMD in both sexes (P <.0001) and CIREN occupants with less than 145 mg/cc vBMD sustained an average 1.7 additional rib/sternum fractures (P =.036).

Conclusions: Because lumbar vBMD was estimated from phantomless CT scans with accuracy similar to qCT, the phantomless technique can be broadly applied to both prospectively and retrospectively assess patient bone quality for research and clinical studies related to MVCs, falls, and aging.  相似文献   
565.
Mass reduction of automotive body structures is a critical part of achieving reduced CO2 emissions in the automotive industry. There has been significant work on the application of ultra high strength steels and aluminum alloys. However, the next paradigm is the integrated use of both materials, which poses a challenge of how to join the dissimilar materials. Friction stir forming is a new manufacturing process for joining dissimilar materials. The concept of this process is stir heating one material and forming it into a mechanical interlocking joint with the second material. In this research the process was experimentally analyzed in a position controlled robotic friction stir welding machine between aluminum and steel workpieces. New tool geometries were evaluated toward the goal of optimizing joint strength. The significant process parameters were identified and their optimized settings for the current experimental conditions defined using a design of experiments methodology. A scanning electron microscope was used to characterize the bonding and joint structure for single and multi-pin configurations. Two failure modes, aluminum sheet peeling and bonding delamination, i.e. braze fracture, were identified. It was found that the presence of zinc coating on the steel and overall joint geometry greatly affected the joint strength. The aluminum–zinc braze joint appears to be the largest contributor to joint strength for the single-pin joint configuration. The multi-pin geometry enabled a distribution of load to the four pins following fracture of the braze for increased joint toughness and ductility. Thus, the FSF method has been shown to exhibit potential for joining of aluminum to steel.  相似文献   
566.
The Sand Hills subdivision of the Southeastern Plains ecoregion has been impacted by historical land uses over the past two centuries and, with the additive effects of contemporary land use, determining reference condition for streams in this region is a challenge. We identified reference condition based on the combined use of 3 independent selection methods. Method 1 involved use of a multivariate disturbance gradient derived from several stressors, method 2 was based on variation in channel morphology, and method 3 was based on passing 6 of 7 environmental criteria. Sites selected as reference from all 3 methods were considered primary reference, whereas those selected by 2 or 1 methods were considered secondary or tertiary reference, respectively. Sites not selected by any of the methods were considered non-reference. In addition, best professional judgment (BPJ) was used to exclude some sites from any reference class, and comparisons were made to examine the utility of BPJ. Non-metric multidimensional scaling indicated that use of BPJ may help designate non-reference sites when unidentified stressors are present. The macroinvertebrate community measures Ephemeroptera, Plecoptera, Trichoptera richness and North Carolina Biotic Index showed no differences between primary and secondary reference sites when BPJ was ignored. However, there was no significant difference among primary, secondary, and tertiary reference sites when BPJ was used. We underscore the importance of classifying reference conditions, especially in regions that have endured significant anthropogenic activity. We suggest that the use of secondary reference sites may enable construction of models that target a broader set of management interests.  相似文献   
567.
In the Appalachian region of the eastern United States, mountaintop removal mining (MTM) is a dominant driver of land‐cover change, impacting 6.8% of the largely forested 4.86 million ha coal fields region. Recent catastrophic flooding and documented biological impairment downstream of MTM has drawn sharp criticism to this practice. Despite its extent, scale, and use since the 1970s, the impact of MTM on hydrology is poorly understood. Therefore, the goal of this study was a multiscale evaluation to establish the nature of hydrologic impacts associated with MTM. To quantify the extent of MTM, land‐cover change over the lifetime of this practice is estimated for a mesoscale watershed in southern West Virginia. To assess hydrologic impacts, we conducted long‐term trend analyses to evaluate for systematic changes in hydrology at the mesoscale, and conducted hydrometric and response time modeling to characterize storm‐scale responses of a MTM‐impacted headwater catchment. Results show a general trend in the conversion of forests to mines, and significant decreases in maximum streamflow and variability, and increases in base‐flow ratio attributed to valley fills and deep mine drainage. Decreases in variability are shown across spatial and temporal scales having important implications for water quantity and quality. However, considerable research is necessary to understand how MTM impacts hydrology. In an effort to inform future research, we identify existing knowledge gaps and limitations of our study.  相似文献   
568.
The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different—and potentially conflicting—values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote “sustainable” bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.  相似文献   
569.
Vegetation Response to Western Juniper Slash Treatments   总被引:2,自引:0,他引:2  
The expansion of piñon–juniper woodlands the past 100 years in the western United States has resulted in large scale efforts to kill trees and recover sagebrush steppe rangelands. It is important to evaluate vegetation recovery following woodland control to develop best management practices. In this study, we compared two fuel reduction treatments and a cut-and-leave (CUT) treatment used to control western juniper (Juniperus occidentalis spp. occidentalis Hook.) of the northwestern United States. Treatments were; CUT, cut-and-broadcast burn (BURN), and cut-pile-and-burn the pile (PILE). A randomized complete block design was used with five replicates of each treatment located in a curl leaf mahogany (Cercocarpus ledifolius Nutt. ex Torr. & A. Gray)/mountain big sagebrush (Artemisia tridentata Nutt. spp. vaseyana (Rydb.) Beetle)/Idaho fescue (Festuca idahoensis Elmer) association. In 2010, 4 years after tree control the cover of perennial grasses (PG) [Sandberg’s bluegrass (Poa secunda J. Pres) and large bunchgrasses] were about 4 and 5 % less, respectively, in the BURN (7.1 ± 0.6 %) than the PILE (11.4 ± 2.3 %) and CUT (12.4 ± 1.7 %) treatments (P < 0.0015). In 2010, cover of invasive cheatgrass (Bromus tectorum L.) was greater in the BURN (6.3 ± 1.0 %) and was 50 and 100 % greater than PILE and CUT treatments, respectively. However, the increase in perennial bunchgrass density and cover, despite cheatgrass in the BURN treatment, mean it unlikely that cheatgrass will persist as a major understory component. In the CUT treatment mahogany cover increased 12.5 % and density increased in from 172 ± 25 to 404 ± 123 trees/ha. Burning, killed most or all of the adult mahogany, and mahogany recovery consisted of 100 and 67 % seedlings in the PILE and BURN treatments, respectively. After treatment, juniper presence from untreated small trees (<1 m tall; PILE and CUT treatments) and seedling emergence (all treatments) represented 25–33 % of pre-treatment tree density. To maintain recovery of herbaceous, shrub, and mahogany species additional control of reestablished juniper will be necessary.  相似文献   
570.
Encroachment of riparian vegetation into regulated river channels exerts control over fluvial processes, channel morphology, and aquatic ecology. Reducing encroachment of terrestrial vegetation is an oft-cited objective of environmental flow recommendations, but there has been no systematic assessment of the evidence for and against the widely-accepted cause-and-effect mechanisms involved. We systematically reviewed the literature to test whether environmental flows can reduce the encroachment of terrestrial vegetation into river channels. We quantified the level of support for five explicit cause-effect hypotheses drawn from a conceptual model of the effects of flow on vegetation. We found that greater inundation, variously expressed as changes in the area, depth, duration, frequency, seasonality, and volume of surface water, generally reduces riparian vegetation abundance in channels, but most studies did not investigate the specific mechanisms causing these changes. Those that did show that increased inundation results in increased mortality, but also increased germination. The evidence was insufficient to determine whether increased inundation decreases reproduction. Our results contribute to hydro-ecological understanding by using the published literature to test for general cause-effect relationships between flow regime and terrestrial vegetation encroachment. Reviews of this nature provide robust support for flow management, and are more defensible than expert judgement-based approaches. Overall, we predict that restoration of more natural flow regimes will reduce encroachment of terrestrial vegetation into regulated river channels, partly through increased mortality. Conversely, infrequent deliveries of environmental flows may actually increase germination and subsequent encroachment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号