首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   961篇
  免费   32篇
  国内免费   8篇
安全科学   52篇
废物处理   43篇
环保管理   257篇
综合类   82篇
基础理论   256篇
环境理论   2篇
污染及防治   199篇
评价与监测   68篇
社会与环境   34篇
灾害及防治   8篇
  2023年   8篇
  2022年   16篇
  2021年   12篇
  2020年   6篇
  2019年   14篇
  2018年   20篇
  2017年   21篇
  2016年   28篇
  2015年   30篇
  2014年   26篇
  2013年   60篇
  2012年   58篇
  2011年   58篇
  2010年   40篇
  2009年   60篇
  2008年   68篇
  2007年   59篇
  2006年   56篇
  2005年   32篇
  2004年   42篇
  2003年   39篇
  2002年   35篇
  2001年   9篇
  2000年   15篇
  1999年   14篇
  1998年   14篇
  1997年   11篇
  1996年   14篇
  1995年   15篇
  1994年   19篇
  1993年   12篇
  1992年   9篇
  1991年   7篇
  1990年   5篇
  1989年   9篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   4篇
  1983年   8篇
  1982年   8篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1971年   1篇
  1957年   2篇
排序方式: 共有1001条查询结果,搜索用时 15 毫秒
201.
Pike DA  Pizzatto L  Pike BA  Shine R 《Ecology》2008,89(3):607-611
Survival rates of juvenile reptiles are critical population parameters but are difficult to obtain through mark-recapture programs because these small, secretive animals are rarely caught. This scarcity has encouraged speculation that survival rates of juveniles are very low, and we test this prediction by estimating juvenile survival rates indirectly. A simple mathematical model calculates the annual juvenile survival rate needed to maintain a stable population size, using published data on adult survival rates, reproductive output, and ages at maturity in 109 reptile populations encompassing 57 species. Counter to prediction, estimated juvenile survival rates were relatively high (on average, only about 13% less than those of conspecific adults) and highly correlated with adult survival rates. Overall, survival rates during both juvenile and adult life were higher in turtles than in snakes, and higher in snakes than in lizards. As predicted from life history theory, rates of juvenile survival were higher in species that produce large offspring, and higher in viviparous squamates than in oviparous species. Our analyses challenge the widely held belief that juvenile reptiles have low rates of annual survival and suggest instead that sampling problems and the elusive biology of juvenile reptiles have misled researchers in this respect.  相似文献   
202.
Kennedy BP  Nislow KH  Folt CL 《Ecology》2008,89(9):2529-2541
Realistic population models and effective conservation strategies require a thorough understanding of mechanisms driving stage-specific mortality. Mortality bottlenecks for many species occur in the juvenile stage and are thought to result from limitation on food or foraging habitat during a "critical period" for growth and survival. Without a way to account for maternal effects or to measure integrated consumption rates in the field, it has been virtually impossible to test these relationships directly. Hence uncertainties about mechanisms underlying such bottlenecks remain. In this study we randomize maternal effects across sites and apply a new method for measuring consumption integrated over weeks to months to test the hypothesis that food limitation drives early-season juvenile mortality bottlenecks in Atlantic salmon (Salmo salar). Using natural signatures of geologically derived cesium (133Cs), we estimated consumption rates of >400 fry stocked into six streams. Two to four weeks after stocking, consumption was extremely low across sites (0.005 g x g(-1) x d(-1)) and was predicted to be below maintenance rations (i.e., yielding negative energy balances) for the majority of individuals from five of six sites. However, consumption during this time was positively correlated with growth rates and survival (measured at the end of the growing season). In contrast, consumption rates increased in mid- (0.030 g x g(-1) x d(-1)) and late (0.035 g x g(-1) x d(-1)) seasons, but juvenile survival and consumption were not correlated, and correlations between growth and consumption were weak. These findings are consistent with predictions of a habitat-based bioenergetic model constructed using the actual stream positions of the individual fish in the present study, which indicates that habitat-based models capture important environmental determinants of juvenile growth and survival. Hence, by combining approaches, reducing maternal effects and controlling initial conditions, we offer a general framework for linking foraging with juvenile survival and present the first direct consumption-based evidence for the early season bottleneck hypothesis.  相似文献   
203.
We examined the taxonomic resolution of zooplankton data required to identify ocean basin scale biogeographic zonation in the Southern Ocean. A 2,154 km transect was completed south of Australia. Sea surface temperature (SST) measured at 1 min intervals showed that seven physical zones were sampled. Zooplankton were collected at a spatial resolution of ~9.2 km with a continuous plankton recorder, identified to the highest possible taxonomic resolution and enumerated. Zooplankton assemblage similarity between samples was calculated using the Bray–Curtis index for the taxonomic levels of species, genus, family, order and class after first log10(x + 1) (LA) and then presence/absence (PA) transformation of abundance data. Although within and between zone sample similarity increased with decreasing taxonomic resolution, for both data transformations, cluster analysis demonstrated that the biogeographic separation of zones remained at all taxonomic levels when using LA data. ANOSIM confirmed this, detecting significant differences in zooplankton assemblage structure between all seven a priori determined physical zones for all taxonomic levels when using the LA data. In the case of the PA data for the complete data set, and both LA and PA data for a crustacean only data set, no significant differences were detected between zooplankton assemblages in the Polar frontal zone (PFZ) and inter-PFZ at any taxonomic level. Loss of information at resolutions below the species level, particularly in the PA data, prevented the separation of some zones. However, the majority of physical zones were biogeographically distinct from species level to class using both LA and PA transformations. Significant relationships between SST and zooplankton community structure, summarised as NMDS scores, at all taxonomic levels, for both LA and PA transformations, and complete and crustacean only data sets, highlighted the biogeographic relevance of low resolution taxonomic data. The retention of biogeographic information in low taxonomic resolution data shows that data sets collected with different taxonomic resolutions may be meaningfully merged for the post hoc generation of Southern Ocean time series.  相似文献   
204.
Estimates of a population’s growth rate and process variance from time-series data are often used to calculate risk metrics such as the probability of quasi-extinction, but temporal correlations in the data from sampling error, intrinsic population factors, or environmental conditions can bias process variance estimators and detrimentally affect risk predictions. It has been claimed (McNamara and Harding, Ecol Lett 7:16–20, 2004) that estimates of the long-term variance that incorporate observed temporal correlations in population growth are unaffected by sampling error; however, no estimation procedures were proposed for time-series data. We develop a suite of such long-term variance estimators, and use simulated data with temporally autocorrelated population growth and sampling error to evaluate their performance. In some cases, we get nearly unbiased long-term variance estimates despite ignoring sampling error, but the utility of these estimators is questionable because of large estimation uncertainty and difficulties in estimating correlation structure in practice. Process variance estimators that ignored temporal correlations generally gave more precise estimates of the variability in population growth and of the probability of quasi-extinction. We also found that the estimation of probability of quasi-extinction was greatly improved when quasi-extinction thresholds were set relatively close to population levels. Because of precision concerns, we recommend using simple models for risk estimates despite potential biases, and limiting inference to quantifying relative risk; e.g., changes in risk over time for a single population or comparative risk among populations.  相似文献   
205.
Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and incorporate realistic fire characteristics (shapes, distributions, and effects) that can vary within and between fire events. We demonstrate the capabilities of the new extensions using two case study examples with very different ecosystem characteristics: a boreal forest system from central Labrador, Canada, and a mixed conifer system from the Sierra Nevada Mountains (California, USA). In Labrador, comparison between the more complex dynamic fire extension and a classic fire simulator based on a simple fire size distribution showed little difference in terms of mean fire rotation and potential severity, but cumulative burn patterns created by the dynamic fire extension were more heterogeneous due to feedback between fuel types and fire behavior. Simulations in the Sierra Nevada indicated that burn patterns were responsive to topographic features, fuel types, and an extreme weather scenario, although the magnitude of responses depended on elevation. In both study areas, simulated fire size and resulting fire rotation intervals were moderately sensitive to parameters controlling the curvilinear response between fire spread and weather, as well as to the assumptions underlying the correlation between weather conditions and fire duration. Potential fire severity was more variable within the Sierra Nevada landscape and also was more sensitive to the correlation between weather conditions and fire duration. The fire modeling approach described here should be applicable to questions related to climate change and disturbance interactions, particularly within locations characterized by steep topography, where temporally or spatially dynamic vegetation significantly influences spread rates, where fire severity is variable, and where multiple disturbance types of varying severities are common.  相似文献   
206.
The slope and aspect of a vegetated surface strongly affects the amount of solar radiation intercepted by that surface. Solar radiation is the dominant component of the surface energy balance and influences ecologically critical factors of microclimate, including near-surface temperatures, evaporative demand and soil moisture content. It also determines the exposure of vegetation to photosynthetically active and ultra-violet wavelengths. Spatial variation in slope and aspect is therefore a key determinant of vegetation pattern, species distribution and ecosystem processes in many environments. Slope and aspect angle may vary considerably over distances of a few metres, and fine-scale species’ distribution patterns frequently follow these topographic patterns. The availability of suitable microclimate at such scales may be critical for the response of species distributions to climatic change at much larger spatial scales. However, quantifying the relevant microclimatic gradients is not straightforward, as the potential variation in solar radiation flux under clear-sky conditions is modified by local and regional variations in cloud cover, and interacts with long-wave radiation exchange, local meteorology and surface characteristics.  相似文献   
207.
Scaling mass and morphology in leaves: an extension of the WBE model   总被引:4,自引:0,他引:4  
Price CA  Enquist BJ 《Ecology》2007,88(5):1132-1141
Recent advances in metabolic scaling theory have highlighted the importance of exchange surfaces and vascular network geometry in understanding the integration and scaling of whole-plant form and function. Additional work on leaf form and function has also highlighted general scaling relationships for many leaf traits. However, it is unclear if a common theoretical framework can reveal the general rules underlying much of the variation observed in scaling relationships at the whole-plant and leaf level. Here we present an extension of the general model introduced by G. B. West, J. H. Brown, and B. J. Enquist that has previously been applied to scaling phenomena for whole plants to predict scaling relationships in leaves. Specifically, the model shows how the exponents that describe the scaling of leaf surface area, length, and petiole diameter should change with increasing leaf mass (or with one another) and with variation in leaf dimensionality. The predictions of the model are tested and found to be in general agreement with a large data set of leaves collected from both temperate and arid sites. Our results demonstrate that a general model based on the scaling properties of biological distribution networks can also be successfully applied to understand the diversity of leaf form and function.  相似文献   
208.
Environmental fate of alkylphenols and alkylphenol ethoxylates--a review   总被引:31,自引:0,他引:31  
Alkylphenol ethoxylates (APEs) are widely used surfactants in domestic and industrial products, which are commonly found in wastewater discharges and in sewage treatment plant (STP) effluents. Degradation of APEs in wastewater treatment plants or in the environment generates more persistent shorter-chain APEs and alkylphenols (APs) such as nonylphenol (NP), octylphenol (OP) and AP mono- to triethoxylates (NPE1, NPE2 and NPE3). There is concern that APE metabolites (NP, OP, NPE1-3) can mimic natural hormones and that the levels present in the environment may be sufficient to disrupt endocrine function in wildlife and humans. The physicochemical properties of the APE metabolites (NP, NPE1-4, OP, OPE1-4), in particular the high K(ow) values, indicate that they will partition effectively into sediments following discharge from STPs. The aqueous solubility data for the APE metabolites indicate that the concentration in water combined with the high partition coefficients will provide a significant reservoir (load) in various environmental compartments. Data from studies conducted in many regions across the world have shown significant levels in samples of every environmental compartment examined. In the US, levels of NP in air ranged from 0.01 to 81 ng/m3, with seasonal trends observed. Concentrations of APE metabolites in treated wastewater effluents in the US ranged from < 0.1 to 369 microg/l, in Spain they were between 6 and 343 microg/l and concentrations up to 330 microg/l were found in the UK. Levels in sediments reflected the high partition coefficients with concentrations reported ranging from < 0.1 to 13,700 microg/kg for sediments in the US. Fish in the UK were found to contain up to 0.8 microg/kg NP in muscle tissue. APEs degraded faster in the water column than in sediment. Aerobic conditions facilitate easier further biotransformation of APE metabolites than anaerobic conditions.  相似文献   
209.
Heat stress on workers working outdoors in the power industry may result in fatigue and deterioration in task performance. This research collected and analyzed data on task performance of workers working indoors and outdoors with and without a cooling suit. The task performance was compared on the basis of heart rate, oxygen consumption, tympanic temperature, subjective responses, productivity, and error rates. Based on One-Way Analysis Of Variance (ANOVA) results, a significantly lower estimated working oxygen consumption was observed (p < .001) when the cooling suit was worn. The productivity was higher while workers wore the cooling suit as compared to no cooling suit (p = .011) whereas the error rates were significantly lower (p < .001). Also a significantly lower self-reported discomfort was observed in the neck and shoulders while working wearing the cooling suit (p = .004). This study concluded that wearing a cooling suit while working outdoors was associated with physiological benefits as well as improved task performance of the study participants.  相似文献   
210.
Letters     
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号