首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
安全科学   1篇
废物处理   1篇
环保管理   5篇
综合类   3篇
基础理论   7篇
污染及防治   3篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2001年   1篇
  2000年   2篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
11.
Abstract: Forest fragmentation leads to a dramatic increase in forest edge, and these edges may function as traps and concentrators for wind-borne nutrients and pollutants. We assessed the influence of forest edges on atmospheric deposition and subsequent inputs to the forest floor in deciduous-forest fragments in the eastern United States. To quantify these inputs, we collected throughfall—water that has passed through the forest canopy—from edge and interior zones of forests adjacent to open fields. During the 1995 growing season, atmospheric input (wet and dry deposition) of sulfur to forest edge zones was elevated compared with input to forest interiors. Throughfall fluxes of dissolved inorganic nitrogen and calcium were also greater at edges than interiors. The mean edge increases ranged from 17% to 56% for the nutrients and pollutants we measured. When we manipulated the structure of forest edges by removing all vegetation below half the canopy height, throughfall flux in the edge zone declined sharply and was less than that of the respective interior zone. Changing the vegetation structure of the edge also shifted the zone of highest throughfall flux farther into the interior of the forest. Our data suggest that forest edges can function both as significant traps for airborne nutrients and pollutants from adjoining agricultural or urban landscapes and effective concentrators of below-canopy chemical fluxes. These enhanced fluxes may have cascading effects on soil-nutrient cycling, microbial activity, seedling dominance, and other ecological processes near forest edges.  相似文献   
12.
Within the tropical and subtropical oceans, tuna forage opportunistically on a wide variety of prey. However, little is known about the trophic ecology of the smallest size classes which play an important role in stock assessments and fisheries management. The foraging behavior of yellowfin tuna, Thunnus albacares (23.5–154.0 cm FL), collected from nearshore Fish Aggregating Devices (FADs) around Oahu was studied using stable isotope and stomach contents analyses. Emphasis was placed on small juveniles. Yellowfin tuna changed their diets significantly between 45 and 50 cm forklength (ca. 1.5 kg). Smallest size classes fed on planktonic organisms inhabiting the shallow mixed layer, primarily larval stomatopod and decapod crustaceans, whereas larger tuna fed on teleosts and adult Oplophorus gracilirostris, a vertically migrating mesopelagic species of shrimp. When interpreting the variation in prey δ 15N values, we considered both their relative trophic position and δ 15N values of the nitrogen at the base of the food web. Based on the distinct diet shift of the yellowfin tuna, demonstrated by both isotope and stomach content analyses, we propose a critical mass threshold was reached at about 45 cm FL that enabled sufficient endothermic capability to allow tuna to access prey dwelling in deeper, colder water. These ontogenetic changes in foraging range and commensurate shift in diet of small tunas would affect their vulnerability to fishing pressure.  相似文献   
13.
a production in the central, south central, and the south segments of the lagoon. In a system as large and complex as the lagoon, N and P limitations are potentially subject to significant spatial and temporal variability. Total Kjeldahl nitrogen (TN) was higher in the north (1.25 mg/liter) and lower in the south (0.89 mg/liter). The reverse pattern was observed for total P (TP), i.e., lowest in the north (0.03 mg/liter) and highest at the south (0.14 mg/liter) ends of the IRL. This increased P concentration in the SIRL appears to have a significantly large effect on chlorophyll a production compared with the other segments, as indicated by stepwise regression statistics. This relationship can be expressed as follows: South IRL [chlorophyll a] =−8.52 + 162.41 [orthophosphate] + 7.86 [total nitrogen] + 0.38 [turbidity]; R 2= 0.98**.  相似文献   
14.
In complex, large-scale systems, event analyses are constrained by the quality of the data gathered, the maturity of the associated reporting system, and the training and background of the investigator and reporter. Such constraints place limits on the adequacy and strength of analyses conducted with the data. In this paper, we focus on the challenges of measuring performance variability in complex systems, using the lens of human and organizational error modeling. This paper begins with an overview of human and organizational error assessments, and then introduces the particular challenges of data needs in human reliability analyses. A case study of human and organizational error analysis in a complex, large-scale system, marine transportation in Puget Sound, is used to illustrate the impact of the data challenges on risk assessment processes. Suggestions for future research conclude the paper.  相似文献   
15.
Condensed tannins, extractable from tree bark have been assessed as functional additives to provide a protective role to acrylic-based coating resins. In addition to retaining high antioxidant capacity, the UV absorption properties of native and chemically modified tannins were found to be variously impacted by pH and degree of esterification or etherification. When added to acrylic-based coatings, these tannins were found to contribute colour to a white-base, but only small perceptive differences were found for clear coated wood using typical additive loadings of 0.1–0.4%. Integration of tannins in native or modified form to do not inhibit the cure of acrylic coatings or found to leach from cured coating films. Accelerated weathering was used to evaluate the photo-stability of tannin-modified acrylic and styrene-acrylic coatings. Native and modified tannins with maleate or methylcarboxylate groups retaining high antioxidant activity were associated with significantly greater coating longevity and performance than use of a synthetic photostabiliser. Moreover, esterified condensed tannins with a high degree of substitution also outperformed synthetic additives indicating the inherent UV absorption potential of these materials also contributed this efficacy within the acrylic and styrene-acrylic coating systems.  相似文献   
16.
ABSTRACT. Establishment of seagrass‐based pollutant load reduction targets is a major aim of water quality management in the Indian River Lagoon (IRL) estuary. It is believed that light and water clarity are the limiting factors affecting seagrass abundance and distribution in the Lagoon. Thus, targeted reductions of nutrients, dissolved organic matter and for suspended sediments should achieve desired seagrass coverage goals. On an annual average, the Lagoon is receiving external loadings of 5,346, 771, and 54,408 metric tons per year of nitrogen (N), phosphorus (P), and total suspended solids (TSS), respectively. Most of the loadings are stormwater generated; thus, implementation of reduction targets will key in on major urban and agricultural stormwater systems. The process of developing targets requires the establishment of light requirements for seagrass. Two methods are being employed to develop such targets. One method is the application of a predictive, 3‐D model that accounts for the essential interactive processes of the Lagoon: hydrology, hydrodynamics, water quality, nutrient uptake/release, seagrass growth rates, and light attenuation. The other method is based simply on the comparison of loading rates between a developed sub‐basin with associated seagrass impacts and an undeveloped sub‐basin with adjacent healthy seagrass coverages. The latter method will provide the initial and preliminary targets that can be tested, confirmed, or modified by application of the 3‐D model.  相似文献   
17.
18.

Background

Disease severity is important when considering genes for inclusion on reproductive expanded carrier screening (ECS) panels. We applied a validated and previously published algorithm that classifies diseases into four severity categories (mild, moderate, severe, and profound) to 176 genes screened by ECS. Disease traits defining severity categories in the algorithm were then mapped to four severity-related ECS panel design criteria cited by the American College of Obstetricians and Gynecologists (ACOG).

Methods

Eight genetic counselors (GCs) and four medical geneticists (MDs) applied the severity algorithm to subsets of 176 genes. MDs and GCs then determined by group consensus how each of these disease traits mapped to ACOG severity criteria, enabling determination of the number of ACOG severity criteria met by each gene.

Results

Upon consensus GC and MD application of the severity algorithm, 68 (39%) genes were classified as profound, 71 (40%) as severe, 36 (20%) as moderate, and one (1%) as mild. After mapping of disease traits to ACOG severity criteria, 170 out of 176 genes (96.6%) were found to meet at least one of the four criteria, 129 genes (73.3%) met at least two, 73 genes (41.5%) met at least three, and 17 genes (9.7%) met all four.

Conclusion

This study classified the severity of a large set of Mendelian genes by collaborative clinical expert application of a trait-based algorithm. Further, it operationalized difficult to interpret ACOG severity criteria via mapping of disease traits, thereby promoting consistency of ACOG criteria interpretation.
  相似文献   
19.
Ammonia is one of the most widely produced and utilized chemicals in the U.S., and while numerous lab studies have been undertaken, there is no consensus on the odor threshold. In contrast to controlled lab conditions used to determine odor thresholds, the field conditions following unintentional chemical releases are uncontrolled and highly variable due to many factors. A critical component in managing the response to these chemical spills involves understanding how lab data could be applied to uncontrolled field conditions in and around the affected community. It was postulated that analysis of field data collected following accidental releases of ammonia might augment and verify data collected in lab experiments. The widespread transport and use of ammonia has resulted in a number of unintentional releases of ammonia into the environment as a result of train derailments, tanker spills, and plant accidents. In the field studies reported here, air monitoring data were collected following a variety of accidental ammonia releases. Of 6539 readings between 0 and 1 ppm, odor was detected only in 208 samples (3.2%). Of 65 readings between 1.1 and 1.5 ppm, odor was detected in 51 samples (78.5%). These data are consistent with an ammonia odor threshold within a concentration range of 1.1–1.5 ppm. This level is consistent with the recently published odor threshold data for ammonia, but is significantly lower than frequently cited historical data. Furthermore, a review of the ammonia literature demonstrates that the ammonia odor threshold is significantly lower than levels that produce eye, nose, or throat irritation.  相似文献   
20.
The rapid increase in residential land area in the United States has raised concern about water pollution associated with nitrogen fertilizers. Nitrate (NO3-) is the form of reactive N that is most susceptible to leaching and runoff; thus, a more thorough understanding of nitrification and NO3(-) availability is needed if we are to accurately predict the consequences of residential expansion for water quality. In particular, there have been few assessments of how the land use history, housing density, and age of residential soils influence NO3(-) pools and fluxes, especially at depth. In this study, we used 1 m deep soil cores to evaluate potential net nitrification and mineralization, microbial respiration and biomass, and soil NO3(-) and NH4+ pools in 32 residential home lawns that differed by previous land use and age, but had similar soil types. These were compared to eight forested reference sites with similar soils. Our results suggest that a change to residential land use has increased pools and production of reactive N, which has clear implications for water quality in the region. However, the results contradict the common assumption that NO3(-) production and availability is dramatically higher in residential soils than in forests in general. While net nitrification (128.6 +/- 15.5 mg m(-2) d(-1) vs. 4.7 +/- 2.3 mg m(-2) d(-1); mean +/- SE) and exchangeable NO3(-) (3.8 +/- 0.5 g/m2 vs. 0.7 +/- 0.3 g/m2) were significantly higher in residential soils than in forest soils in this study, these measures of NO3(-) production and availability were still notably low, comparable to deciduous forest stands in other studies. A second unexpected result was that current homeowner management practices were not predictive of NO3(-) availability or production. This may reflect the transient availability of inorganic N after fertilizer application. Higher housing density and a history of agricultural land use were predictors of greater NO3(-) availability in residential soils. If these factors are good predictors across a wider range of sites, they may be useful indicators of NO3(-) availability and leaching and runoff potential at the landscape scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号