首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   1篇
  国内免费   1篇
安全科学   13篇
废物处理   8篇
环保管理   58篇
综合类   12篇
基础理论   56篇
污染及防治   51篇
评价与监测   19篇
社会与环境   11篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   21篇
  2012年   10篇
  2011年   10篇
  2010年   15篇
  2009年   10篇
  2008年   13篇
  2007年   11篇
  2006年   13篇
  2005年   6篇
  2004年   12篇
  2003年   10篇
  2002年   12篇
  2001年   11篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1964年   1篇
  1961年   1篇
排序方式: 共有228条查询结果,搜索用时 46 毫秒
181.
On-ground natural resource management actions such as revegetation and remnant vegetation management can simultaneously affect multiple objectives including land, water and biodiversity resources. Hence, planning for the sustainable management of natural resources requires consideration of these multiple objectives. However, planning the location of management actions in the landscape often treats these objectives individually to reduce the process and spatial complexity inherent in human-modified and natural landscapes. This can be inefficient and potentially counterproductive given the linkages and trade-offs involved. We develop and apply a systematic regional planning approach to identify geographic priorities for on-ground natural resource management actions that most cost-effectively meet multiple natural resource management objectives. Our systematic regional planning approach utilises integer programming within a structured multi-criteria decision analysis framework. Intelligent siting can capitalise on the multiple benefits of on-ground actions and achieve natural resource management objectives more efficiently. The focus of this study is the human-modified landscape of the River Murray, South Australia. However, the methodology and analyses presented here can be adapted to other regions requiring more efficient and integrated planning for the management of natural resources.  相似文献   
182.
The aim of this study is to investigate the air pollution situation in an urban area in southwestern Luxembourg and to simulate annual NO2 and PM10 concentrations in response to changes in meteorological conditions and emissions using a Gaussian dispersion model. Simulations are carried out for the years 1998–2006. Emission scenarios related to road transport and nonindustrial combustion are performed in order to predict changes of air pollution levels. Road transport is by far the most important local emission source in the study area. Scenarios with more stringent emission standards for vehicles, less traffic, and fewer heavy-duty vehicles lead to reductions of NOx and primary PM10 emissions. As a result, the annual NO2 concentrations are decreasing in most parts of the study area and are below the European annual limit value of 40 μg?m?3. In contrast, a scenario with increased use of wood pellets for domestic heating shows an increase in urban PM10 concentration. The year-to-year variability of meteorological conditions accounts for the same magnitude of absolute NO2 and PM10 concentration changes as the emission scenarios. The comparison with measurements located in the study area shows that the model is able to predict urban-scale annual average air pollution. The proposed application results show that the model can be appropriate for policy-driven air quality management and planning queries.  相似文献   
183.
This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous--derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 +/- 0.4 vs. 0.7 +/- 0.3 mg L(-1)) but comprised < 5% ofmainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs.  相似文献   
184.
In this article we compared the response of surface water runoff to a storm event for different rates of urbanization, reforestation and riparian buffer setbacks across forty subwatersheds of the Muskegon River Watershed located in Michigan, USA. We also made these comparisons for several forecasted and one historical land use scenarios (over 140 years). Future land use scenarios to 2040 for forest regrowth, urbanization rates and stream setbacks were developed using the Land Transformation Model (LTM). Historical land use information, from 1900 at 5-year time step intervals, was created using a Backcast land use change model configured using artificial neural network and driven by agriculture and housing census information. We show that (1) controlling the rate of development is the most effective policy option to reduce runoff; (2) establishing setbacks along the mainstem are not as effective as controlling urban growth; (3) reforestation can abate some of the runoff effects from urban growth but not all; (4) land use patterns of the 1970s produced the least amount of runoff in most cases in the Muskegon River Watershed when compared to land use maps from 1900 to 2040; and, (5) future land use patterns here not always lead to increased (worse) runoff than the past. We found that while ten of the subwatersheds contained futures that were worse than any past land use configuration, twenty-five (62.5%) of the subwatersheds produced the greatest amount of runoff in 1900, shortly after the entire watershed was clear-cut. One third (14/40) of the subwatersheds contained the minimum amount of runoff in the 1960s and 1970s, a period when forest amounts were greatest and urban amounts relatively small.  相似文献   
185.
Grover, James P., Jason W. Baker, Daniel L. Roelke, and Bryan W. Brooks, 2010. Current Status of Mathematical Models for Population Dynamics of Prymnesium parvum in a Texas Reservoir. Journal of the American Water Resources Association (JAWRA) 46(1):92-107. DOI: 10.1111/j.1752-1688.2009.00393.x Abstract: Blooms of the harmful alga Prymnesium parvum have apparently increased in frequency in inland waters of the United States, especially in western Texas. A suite of mathematical models was developed based on a chemostat (or continuously stirred tank reactor) framework, and calibrated with data from Lake Granbury, Texas. Inputs included data on flows, salinity, irradiance, temperature, zooplankton grazing, and nutrients. Parameterization incorporated recent laboratory studies relating the specific growth rate of P. parvum to such factors. Models differed in the number of algal populations competing with P. parvum, and whether competition occurred only by consumption of shared nutrients, or additionally through production of an allelopathic chemical by one of the populations, parameterized as cyanobacteria. Uncalibrated models did not reproduce the observed seasonal dynamics of P. parvum in Lake Granbury, which displayed a maximum population in late February during a prolonged bloom in cooler weather, and reduced abundance in summer. Sensitivity analyses suggested two modifications leading to predictions that better resembled observations. The first modification greatly reduces the optimal temperature for growth of P. parvum, an approach that disagrees with laboratory experiments indicating a strong potential for growth at temperatures above 20°C. The second modification increases the growth rate of P. parvum at all temperatures, in models including cyanobacterial allelopathy. Despite these adjustments, calibrated models did not faithfully simulate all features of the seasonal dynamics of P. parvum.  相似文献   
186.
Effluents from four healthcare facilities were characterized for the concentration of 16 common active pharmaceutical ingredients. The sampled facilities included a hospital, nursing care, assisted living, and independent living facility located within a single municipal wastewater system in Texas. Eleven of the 16 monitored pharmaceuticals were detected in at least 1 healthcare facility effluent and 2 measured antibiotics (sulfamethoxazole and trimethoprim) were detected in all 4 facility effluents. Active pharmaceutical ingredient concentrations ranged from non-detectable levels for several corticosteroids in all facility effluents to 180 microg/L sulfamethoxazole in the nursing care wastewater effluent. The mass of active pharmaceutical ingredients discharged to the municipality's wastewater conveyance system was determined by combining individual facility concentration data and daily wastewater flow. The estimated daily mass loading of all 16 pharmaceuticals ranged from 0.16 g/day to 23 g/day in the assisted living facility and nursing wastewater effluents, respectively. The combined active pharmaceutical ingredient mass loading for all four facilities was 42.6 g/day. These findings provide source characterization data for 16 common pharmaceuticals in healthcare facility wastewater and provide a basis for risk assessment of pharmaceuticals present in healthcare facility wastewaters.  相似文献   
187.
We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the “Ratio”) from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios <1 and NOx at Ratios >2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria, the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2, and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g., Chicago), the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.  相似文献   
188.
Two different experimental techniques employing conservative tracers to determine exfiltration losses in a sewer system are reported. Both techniques compare the in-sewer responses measured along designated indicator and reference sections to assess the level of exfiltration although with different degrees of reliability. The experimental and interpretation errors associated with a pulse dosing technique, in which Rhodamine WT is used as the single tracer, are described. The estimation of exfiltration requires the comparison of indicator and reference peaks which need to be well resolved and reproducible in order to provide realistic results. A more consistent technique involves the continuous dosing of two different tracers with the objective of producing simultaneous downstream peak tracer concentrations. Any errors due to flow variations are eliminated and the longer measurement period allows both peak and background concentrations to be more accurately determined. Rhodamine WT, Li and Br were used in different combinations over the approximately 20 min duration of each continuous dosing experiment and were found to demonstrate conservative behaviours with measured recoveries of 97.6-100.6%, 97.3-101.4% and 108.4-109.2%, respectively. The analytical problems associated with the determination of the different tracers in sewage are described and are shown to be responsible for the reduced accuracy of the results associated with the use of Br. The preferred combination of tracers is Rhodamine WT as the indicator and Li as the reference and these are shown to be capable of estimating sewer losses to an accuracy of +/-1.0% using the continuous dosing approach.  相似文献   
189.
Water-borne pathogens such as Cryptosporidium pose a significant human health risk and catchments provide the first critical pollution ‘barrier’ in mitigating risk in drinking water supply. In this paper we apply an adaptive management framework to mitigating Cryptosporidium risk in source water using a case study of the Myponga catchment in South Australia. Firstly, we evaluated the effectiveness of past water quality management programs in relation to the adoption of practices by landholders using a socio-economic survey of land use and management in the catchment. The impact of past management on the mitigation of Cryptosporidium risk in source water was also evaluated based on analysis of water quality monitoring data. Quantitative risk assessment was used in planning the next round of management in the adaptive cycle. Specifically, a pathogen budget model was used to identify the major remaining sources of Cryptosporidium in the catchment and estimate the mitigation impact of 30 alternative catchment management scenarios. Survey results show that earlier programs have resulted in the comprehensive adoption of best management practices by dairy farmers including exclusion of stock from watercourses and effluent management from 2000 to 2007. Whilst median Cryptosporidium concentrations in source water have decreased since 2004 they remain above target levels and put pressure on other barriers to mitigate risk, particularly the treatment plant. Non-dairy calves were identified as the major remaining source of Cryptosporidium in the Myponga catchment. The restriction of watercourse access of non-dairy calves could achieve a further reduction in Cryptosporidium export to the Myponga reservoir of around 90% from current levels. The adaptive management framework applied in this study was useful in guiding learning from past management, and in analysing, planning and refocussing the next round of catchment management strategies to achieve water quality targets.  相似文献   
190.
Many contaminants are chiral compounds with enantiomers that may differ markedly in environmental fate, bioavailability, and toxicity. Enantiospecific environmental fate and ecotoxicological information are lacking for many chiral contaminants. The primary objective of this investigation included an assessment of potential enantiospecific differences in sublethal standardized and behavioral responses of the model organisms Pimephales promelas (teleost) and Daphnia magna (crustacean) to the widely prescribed chiral antidepressant fluoxetine. Endpoints assessed included D. magna immobilization, reproduction, and grazing rate and P. promelas survival, growth, and feeding rate. S-Fluoxetine was found to be more toxic to sublethal standardized and behavioral endpoints in P. promelas, potentially because its primary active metabolite, S-norfluoxetine, is more potent than the same metabolite of R-fluoxetine in mammals. This was not observed for D. magna responses. This differential enantiospecific response between model organisms may have resulted from closer target homology between mammals and fish than between mammals and crustaceans. P. promelas feeding rate, an ecologically relevant and mode-of-action related response, was the most sensitive endpoint tested for R- and S-fluoxetine with 10% effect concentration (EC10) values (+/-SE) of 16.1 (+/-20.2) and 3.7 (+/-4.6) microg l(-1), respectively. Up to a 9.4-fold difference in toxicity between enantiomers was observed; P. promelas growth EC10s (+/-SE) for R- and S-fluoxetine were 132.9 (+/-21.2) and 14.1 (+/-8.1) microg l(-1), respectively. Such differences in sublethal responses to fluoxetine enantiomers suggest that enantiospecific toxicity and mode-of-action related responses that are ecologically relevant (e.g., feeding rate) should be considered in future ecological hazard and risk assessments for chiral contaminants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号