首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1701篇
  免费   16篇
  国内免费   74篇
安全科学   78篇
废物处理   186篇
环保管理   185篇
综合类   164篇
基础理论   279篇
环境理论   2篇
污染及防治   654篇
评价与监测   164篇
社会与环境   63篇
灾害及防治   16篇
  2023年   20篇
  2022年   38篇
  2021年   36篇
  2020年   15篇
  2019年   29篇
  2018年   45篇
  2017年   58篇
  2016年   81篇
  2015年   42篇
  2014年   71篇
  2013年   145篇
  2012年   105篇
  2011年   120篇
  2010年   96篇
  2009年   110篇
  2008年   123篇
  2007年   110篇
  2006年   101篇
  2005年   87篇
  2004年   84篇
  2003年   58篇
  2002年   62篇
  2001年   47篇
  2000年   21篇
  1999年   12篇
  1998年   9篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1965年   1篇
排序方式: 共有1791条查询结果,搜索用时 46 毫秒
861.
Preface     
The combination of bioremediation and electrokinetics, termed bioelectrokinetics, has been studied constantly to enhance the removal of organic and inorganic contaminants from soil. The use of the bioleaching process originating from Fe- and/or S-oxidizing bacteria may be a feasible technology for the remediation of heavy metal–contaminated soils. In this study, the bioleaching process driven by injection of S-oxidizing bacteria, Acidithiobacillus thiooxidans, was evaluated as a pre-treatment step. The bioleaching process was sequentially integrated with the electrokinetic soil process, and the final removal efficiency of the combined process was compared with those of individual processes. Tailing soil, heavily contaminated with Cd, Cu, Pb, Zn, Co, and As, was collected from an abandoned mine area in Korea. The results of geochemical studies supported that this tailing soil contains the reduced forms of sulfur that can be an energy source for A. thiooxidans. From the result of the combined process, we could conclude that the bioleaching process might be a good pre-treatment step to mobilize heavy metals in tailing soil. Additionally, the electrokinetic process can be an effective technology for the removal of heavy metals from tailing soil. For the sake of generalizing the proposed bioelectrokinetic process, however, the site-specific differences in soil should be taken into account in future studies.  相似文献   
862.
This study examines the efficacy of management strategies implemented in 2000 to reduce visitor-induced vegetation impact and enhance vegetation recovery at the summit loop trail on Cadillac Mountain at Acadia National Park, Maine. Using single-spectral high-resolution remote sensing datasets captured in 1979, 2001, and 2007, pre-classification change detection analysis techniques were applied to measure fractional vegetation cover changes between the time periods. This popular sub-alpine summit with low-lying vegetation and attractive granite outcroppings experiences dispersed visitor use away from the designated trail, so three pre-defined spatial scales (small, 0-30 m; medium, 0-60 m; and large, 0-90 m) were examined in the vicinity of the summit loop trail with visitor use (experimental site) and a site chosen nearby in a relatively pristine undisturbed area (control site) with similar spatial scales. Results reveal significant changes in terms of rates of vegetation impact between 1979 and 2001 extending out to 90 m from the summit loop trail with no management at the site. No significant differences were detected among three spatial zones (inner, 0-30 m; middle, 30-60 m; and outer, 60-90 m) at the experimental site, but all were significantly higher rates of impact compared to similar spatial scales at the control site (all p?< 0.001). In contrast, significant changes in rates of recovery between 2001 and 2007 were observed in the medium and large spatial scales at the experimental site under management as compared to the control site (all p?< 0.05). Also during this later period a higher rate of recovery was observed in the outer zone as compared to the inner zone at the experimental site (p?< 0.05). The overall study results suggest a trend in the desired direction for the site and visitor management strategies designed to reduce vegetation impact and enhance vegetation recovery at the summit loop trail of Cadillac Mountain since 2000. However, the vegetation recovery has been rather minimal and did not reach the level of cover observed during the 1979 time period. In addition, the advantages and some limitations of using remote sensing technologies are discussed in detecting vegetation change in this setting and potential application to other recreation settings.  相似文献   
863.
Environmental Science and Pollution Research - This study examined differences in the adsorption isotherms, kinetic equations, and thermodynamics of Sr2+ by biochar from spent coffee grounds (SCG)...  相似文献   
864.
Environmental Science and Pollution Research - The uncertain fate and transport pathways of applied pesticides are the key hidden threats with respect to the safety and quality evaluation of...  相似文献   
865.
Environmental Science and Pollution Research - Local questionnaire surveys were conducted to collect representative activity data for calculation of annual emissions from residential combustion in...  相似文献   
866.
867.
868.
Development of clean technology in alcohol fermentation industry   总被引:1,自引:0,他引:1  
A zero-discharge system for the alcohol fermentation industry was developed by recycling distillery waste (stillage). Stillage was able to be recycled as cooking water for the next fermentation after treating it with appropriate separation processes. Ultrafiltration with a ceramic membrane played a key role in the separation processes. When the permeate from the ultrafiltration of stillage was recycled to the cooking step, the total fermentation time was prolonged from 60 to 70–80 h, but the average ethanol production yield (8.8%) was similar to that in the conventional process (9.0%). In contrast, direct recycle of stillage without membrane filtration showed negative effects on both fermentation time and alcohol yield as recycling was repeated. This new process was confirmed to have stable operation over eight recycles. This new clean technology for the ethanol production industry makes it possible to eliminate the stillage treatment steps using the conventional biological treatment processes such as anaerobic digestion and activated sludge steps currently being operated in industry.  相似文献   
869.
Fine particle (aerodynamic diameter <2.5 microm) samples were collected during six intensive measurement periods from November 2001 to August 2003 at Gosan, Jeju Island, Korea, which is one of the representative background sites in East Asia. Chemical composition of these aerosol samples including major ion components, trace elements, organic and elemental carbon (OC and EC), and particulate polycyclic aromatic hydrocarbons (PAHs) were analyzed to study the impact of long-range transport of anthropogenic aerosol. Aerosol chemical composition data were then analyzed using the positive matrix factorization (PMF) technique in order to identify the possible sources and estimate their contribution to particulate matter mass. Fourteen sources were then resolved including soil dust, fresh sea salt, transformed natural source, ammonium sulfate, ammonium nitrate, secondary organic carbon, diesel vehicle, gasoline vehicle, fuel oil combustion, biomass burning, coal combustion, municipal incineration, metallurgical emission source, and volcanic emission. The PMF analysis results of source contributions showed that the natural sources including soil dust, fresh and aged sea salt, and volcanic emission contributed to about 20% of the measured PM(2.5) mass. Other primary anthropogenic sources such as diesel and gasoline vehicle, coal and fuel oil combustion, biomass burning, municipal incineration, metallurgical source contributed about 34% of PM(2.5) mass. Especially, the secondary aerosol mainly involved with sulfate, nitrate, ammonium, and organic carbon contributed to about 39% of the PM(2.5) mass.  相似文献   
870.
Formaldehyde (HCHO) is toxic to the human body and is one of the main threats to the indoor air quality (IAQ). As such, the removal of HCHO is imperative to improving the IAQ, whereby the most useful method to effectively remove HCHO at room temperature is catalytic oxidation. This review discusses catalysts for HCHO room-temperature oxidation, which are categorized according to their preparation methods, i.e., gas-phase reduction and liquid-phase reduction methods. The HCHO oxidation performances, structural features, and reaction mechanisms of the different catalysts are discussed, and directions for future research on catalytic oxidation are reviewed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号