首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1126篇
  免费   42篇
  国内免费   24篇
安全科学   56篇
废物处理   63篇
环保管理   305篇
综合类   101篇
基础理论   301篇
环境理论   4篇
污染及防治   227篇
评价与监测   77篇
社会与环境   49篇
灾害及防治   9篇
  2023年   14篇
  2022年   14篇
  2021年   17篇
  2020年   24篇
  2019年   16篇
  2018年   43篇
  2017年   44篇
  2016年   65篇
  2015年   46篇
  2014年   45篇
  2013年   88篇
  2012年   65篇
  2011年   90篇
  2010年   54篇
  2009年   59篇
  2008年   60篇
  2007年   64篇
  2006年   49篇
  2005年   31篇
  2004年   44篇
  2003年   35篇
  2002年   30篇
  2001年   16篇
  2000年   20篇
  1999年   18篇
  1998年   18篇
  1997年   19篇
  1996年   14篇
  1995年   8篇
  1994年   4篇
  1993年   12篇
  1992年   9篇
  1991年   8篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   8篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   6篇
  1978年   2篇
  1976年   1篇
排序方式: 共有1192条查询结果,搜索用时 253 毫秒
911.
Several buildings were contaminated with Bacillus anthracis in the fall of 2001. These events required consideration of how to disinfect large indoor spaces for continued worker occupation. The interactions of gaseous disinfectants with indoor materials may inhibit the disinfection process, cause persistence of the disinfectant, and lead to possible byproduct formation and persistence. Methyl bromide (CH3Br) is a candidate for disinfection/deactivation of biological agents in buildings. In this study, 24 indoor materials were exposed to CH3Br for 16 hr at concentrations ranging from 100 to 2500 ppm in 48-L electropolished stainless steel chambers. CH3Br concentrations were measured during and after disinfection. Its interactions with materials were observed to be small, with nearly complete and rapid desorption. Between 3% and 8% of CH3Br adsorbed to four materials (office partition, ceiling tile, particle-board, and gypsum wallboard with satin paint), and the degree of adsorption decreased with increasing relative humidity. The percentage of adsorption to all other materials was <2%. This result suggests that when designing disinfection events with CH3Br, loss to indoor materials can be neglected in terms of disinfectant dose calculations. Possible reaction products were identified and/or quantified before and after exposure to CH3Br. Several monomethylated and dimethylated aliphatic compounds were observed in chamber air at low concentrations after the exposures of six materials to CH3Br. Concentration increases also occurred for chemicals that were observed to naturally off-gas from materials before exposure to CH3Br, suggesting that CH3Br may play a role in enhancing the natural off-gassing of chemicals, for example, by competitive displacement of compounds that already existed in the materials. The results described in this paper should facilitate the design of building disinfection systems involving CH3Br.  相似文献   
912.
The use of porous framework materials in waste management applications has the potential to be a powerful tool in toxic metal remediation. The properties that these materials possess, including high surface area and ion-exchange capacity, are theoretically valuable. Furthermore, the flexibility of many of these frameworks allows the potential for immobilisation of waste materials with the framework of the material, in addition to the traditional capture in the pore structure. However, for either of these routes to be useful for waste management purposes, these structures must also be stable in any proposed storage media. This study examines the stability of a range of porous materials whose frameworks are made out of zinc and arsenic, both considered toxic minesite wastes, when exposed to aqueous media. The three frameworks examined (sodalite analogue Na(6)(H(2)O)(8)(ZnAsO(4))(6), open framework K(3)Zn(4)O(AsO(4))(3).3.5H(2)O, and an ABW type framework NH(4)ZnAsO(4)) all have similar hydrothermal synthetic routes and bulk framework compositions, but differ in counter ion used, pore size and complexity of structure. The phases were examined before and after storage in an aqueous environment, and their crystallinity and leaching were determined. All phases prepared were found to be extremely unstable outside their original synthetic environment, and very soluble when exposed to water, calling into question their practical use in any environment.  相似文献   
913.
Methane yield in source-sorted organic fraction of municipal solid waste   总被引:1,自引:0,他引:1  
Treating the source-separated organic fraction of municipal solid waste (SS-OFMSW) by anaerobic digestion is considered by many municipalities in Europe as an environmentally friendly means of treating organic waste and simultaneously producing methane gas. Methane yield can be used as a parameter for evaluation of the many different systems that exist for sorting and pre-treating waste. Methane yield from the thermophilic pilot scale digestion of 17 types of domestically SS-OFMSW originating from seven full-scale sorting systems was found. The samples were collected during 1 year using worked-out procedures tested statistically to ensure representative samples. Each waste type was identified by its origin and by pre-sorting, collection and pre-treatment methods. In addition to the pilot scale digestion, all samples were examined by chemical analyses and methane potential measurements. A VS-degradation rate of around 80% and a methane yield of 300-400Nm(3) CH(4)/ton VS(in) were achieved with a retention time of 15 days, corresponding to approximately 70% of the methane potential. The different waste samples gave minor variation in chemical composition and thus also in methane yield and methane potential. This indicates that sorting and collection systems in the present study do not significantly affect the amount of methane produced per VS treated.  相似文献   
914.
We evaluated exposure of aquatic biota to lead (Pb), zinc (Zn), and cadmium (Cd) in streams draining a Pb-mining district in southeast Missouri. Samples of plant biomass (detritus, periphyton, and filamentous algae), invertebrates (snails, crayfish, and riffle benthos), and two taxa of fish were collected from seven sites closest to mining areas (mining sites), four sites further downstream from mining (downstream sites), and eight reference sites in fall 2001. Samples of plant biomass from mining sites had highest metal concentrations, with means 10- to 60-times greater than those for reference sites. Mean metal concentrations in over 90% of samples of plant biomass from mining sites were significantly greater than those from reference sites. Mean concentrations of Pb, Zn, and Cd in most invertebrate samples from mining sites, and mean Pb concentrations in most fish samples from mining sites, were also significantly greater than those from reference sites. Concentrations of all three metals were lower in samples from downstream sites, but several samples of plant biomass from downstream sites had metal concentrations significantly greater than those from reference sites. Analysis of supplemental samples collected in the fall of 2002, a year of above-average stream discharge, had lower Pb concentrations and higher Cd concentrations than samples collected in 2001, near the end of a multi-year drought. Concentrations of Pb measured in fish and invertebrates collected from mining sites during 2001 and 2002 were similar to those measured at nearby sites in the 1970s, during the early years of mining in the Viburnum Trend. Results of this study demonstrate that long-term Pb mining activity in southeast Missouri has resulted in significantly elevated concentrations of Pb, Cd, and Zn in biota of receiving streams, compared to biota of similar streams without direct influence of mining. Our results also demonstrate that metal exposure in the study area differed significantly among sample types, habitats, and years, and that these factors should be carefully considered in the design of biomonitoring studies.  相似文献   
915.
As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash.  相似文献   
916.
We describe and evaluate a laboratory bioassay that uses Lemna minor L. and attached epiphytes to characterize the status of ambient and nutrient-enriched water from the Portneuf River, Idaho. Specifically, we measured morphological (number of fronds, longest surface axis, and root length) and population-level (number of plants and dry mass) responses of L. minor and community-level (ash-free dry mass [AFDM] and chlorophyll a [Chl a]) responses of epiphytes to nutrient enrichment. Overall, measures of macrophyte biomass and abundance increased with increasing concentrations of dissolved phosphorus (P) and responded more predictably to nutrient enrichment than morphological measures. Epiphyte AFDM and Chl a were also greatest in P-enriched water; enrichments of N alone produced no measurable epiphytic response. The epiphyte biomass response did not directly mirror macrophyte biomass responses, illustrating the value of a combined macrophyte–epiphyte assay to more fully evaluate nutrient management strategies. Finally, the most P-enriched waters not only supported greater standing stocks of macrophyte and epiphytes but also had significantly higher water column dissolved oxygen and dissolved organic carbon concentrations and a lower pH. Advantages of this macrophyte–epiphyte bioassay over more traditional single-species assays include the use of a more realistic level of biological organization, a relatively short assay schedule (~10 days), and the inclusion of multiple biological response and water-quality measures.  相似文献   
917.
Precipitation chemistry and depth measurements obtained by the Canadian Air and Precipitation Monitoring Network (CAPMoN) and the US National Atmospheric Deposition Program/National Trends Network (NADP/NTN) were compared for the 10-year period 1995–2004. Colocated sets of CAPMoN and NADP instrumentation, consisting of precipitation collectors and rain gages, were operated simultaneously per standard protocols for each network at Sutton, Ontario and Frelighsburg, Ontario, Canada and at State College, PA, USA. CAPMoN samples were collected daily, and NADP samples were collected weekly, and samples were analyzed exclusively by each network’s laboratory for pH, H?+?, Ca2?+?, Mg2?+?, Na?+?, K?+?, $\text{NH}_{4}^{+}$ , Cl???, $\text{NO}_{3}^{-}$ , and $\text{SO}_{4}^{2-}$ . Weekly and annual precipitation-weighted mean concentrations for each network were compared. This study is a follow-up to an earlier internetwork comparison for the period 1986–1993, published by Alain Sirois, Robert Vet, and Dennis Lamb in 2000. Median weekly internetwork differences for 1995–2004 data were the same to slightly lower than for data for the previous study period (1986–1993) for all analytes except $\text{NO}_{3}^{-}$ , $\text{SO}_{4}^{2-}$ , and sample depth. A 1994 NADP sampling protocol change and a 1998 change in the types of filters used to process NADP samples reversed the previously identified negative bias in NADP data for hydrogen-ion and sodium concentrations. Statistically significant biases (α = 0.10) for sodium and hydrogen-ion concentrations observed in the 1986–1993 data were not significant for 1995–2004. Weekly CAPMoN measurements generally are higher than weekly NADP measurements due to differences in sample filtration and field instrumentation, not sample evaporation, contamination, or analytical laboratory differences.  相似文献   
918.
919.
Many conservation conflicts are scientifically complex yet are rooted in value conflicts, which result in an impasse. Additional biological information alone is insufficient to resolve this type of conflict. Conceptual models that articulate the material aspects of a system are increasingly used to identify areas where parties disagree. Yet, modeling processes typically follow the conveners’ rules for discussing and assessing the topic, which can exacerbate conflict. Researchers have identified a need for processes that require participants to reflect on the limits of their own philosophical assumptions and acknowledge other perspectives. Cultural models are a promising tool for this purpose because they include nonmaterial beliefs, morals, and values that guide people's understanding of how to interact with an issue, sometimes subconsciously. We explored how cultural models used with conceptual models can improve understanding of value conflicts and used outdoor cat management as a case study. We conducted interviews and focus group discussions with wildlife conservation and cat welfare professionals involved in outdoor cat policy discussions in Hawaii and Washington, D.C. From these conversations, we developed a conceptual model of the outdoor cat management system and cultural models that led stakeholders to weigh elements of the conceptual model differently. Although wildlife conservation professionals generally spoke about outdoor cats as invasive species, cat welfare professionals spoke about them as homeless pets. These conflicting conceptualizations of what an outdoor cat is may help explain the root of many long-standing disagreements. Examining how and when stakeholders invoke different cultural models allowed us to identify management actions that work with, rather than challenge, those models. Dialogue that embraces conflicting cultural models can be difficult and uncomfortable, but has great potential to overcome conservation impasse and achieve lasting conservation results.  相似文献   
920.
Declining crop and livestock production due to a degrading land resource base and changing climate among other biophysical and socio-economic constraints, is increasingly forcing rural households in Zimbabwe and other parts of Southern Africa to rely on common natural resource pools (CNRPs) to supplement their household food and income. Between 2011 and 2013, we combined farmer participatory research approaches, remote sensing and geographic information systems (GIS) to (1) understand the contribution of CNRPs to household food and income in Dendenyore and Ushe smallholder communities in Hwedza District, eastern Zimbabwe and (2) assess changes of the CNRPs in both space and time, and their implications on climate change adaptation. Across study sites, wetlands and woodlands were ranked as the most important CNRPs. Extraction and use patterns of products from the different pools differed among households of different resource endowment. Resource-constrained households (RG3) sold an average of 183 kg household?1 year?1 of wild loquats fruits (Uapaca kirkiana), realising about US$48, while resource-endowed farmers (RG1) had no need to sale any. The RG3 households also realised approximately US$70 household?1 year?1 from sale of crafts made from water reeds (Phragmites mauritianus). Empirical data closely supported communities’ perceptions that CNRPs had declined significantly in recent years compared with two to three decades ago. More than 60 % of the respondents perceived that the availability of natural resources drawn from wetlands and woodlands, often used for food, energy and crafts, has decreased markedly since the 1980s. Classification of land cover in a GIS environment indicated that CNRPs declined between 1972 and 2011, supporting farmers’ perceptions. Overall, woodlands declined by 37 % in both communities, while the total area under wetlands decreased by 29 % in Ushe, a drier area and 49 % in Dendenyore, a relatively humid area. The over-reliance in CNRPs by rural communities could be attributed to continued decline in crop yields linked to increased within-season rainfall variability, and the absence of alternative food and income sources. This suggests limited options for rural communities to adapt to the changing food production systems in the wake of climate change and variability and other challenges such as declining soil fertility. There is therefore a need to design adaptive farm management options that enhance both crop and livestock production in a changing climate as well as identifying other livelihood alternatives outside agriculture to reduce pressure on CNRPs. In addition, promotion of alternative sources of energy such as solar power and biogas among rural communities could reduce the cutting of trees for firewood from woodlands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号