首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3881篇
  免费   107篇
  国内免费   54篇
安全科学   201篇
废物处理   170篇
环保管理   1054篇
综合类   354篇
基础理论   948篇
环境理论   6篇
污染及防治   888篇
评价与监测   240篇
社会与环境   154篇
灾害及防治   27篇
  2023年   29篇
  2022年   35篇
  2021年   45篇
  2020年   55篇
  2019年   52篇
  2018年   94篇
  2017年   100篇
  2016年   157篇
  2015年   102篇
  2014年   107篇
  2013年   382篇
  2012年   162篇
  2011年   239篇
  2010年   172篇
  2009年   188篇
  2008年   197篇
  2007年   211篇
  2006年   176篇
  2005年   108篇
  2004年   150篇
  2003年   132篇
  2002年   118篇
  2001年   69篇
  2000年   58篇
  1999年   60篇
  1998年   56篇
  1997年   55篇
  1996年   59篇
  1995年   60篇
  1994年   42篇
  1993年   52篇
  1992年   33篇
  1991年   37篇
  1990年   38篇
  1989年   26篇
  1988年   34篇
  1987年   33篇
  1986年   43篇
  1985年   25篇
  1984年   38篇
  1983年   31篇
  1982年   33篇
  1981年   31篇
  1980年   24篇
  1979年   18篇
  1978年   14篇
  1977年   10篇
  1976年   10篇
  1974年   8篇
  1972年   9篇
排序方式: 共有4042条查询结果,搜索用时 93 毫秒
71.
ABSTRACT: Historical flow records are used to estimate the regulatory low flows that serve a key function in setting discharge permit limits through the National Pollutant Discharge Elimination System, which provides a nationwide mechanism for protecting water quality. Use of historical records creates an implicit connection between water quality protection and climate variability. The longer the record, the more likely the low flow estimate will be based on a broad set of climate conditions, and thus provides adequate water quality protection in the future. Unfortunately, a long record often is not available at a specific location. This analysis examines the connection between climate variability and the variability of biologically based and hydrologically based low flow estimates at 176 sites from the Hydro‐Climatic Data Network, a collection of stream gages identified by the USGS as relatively free of anthropogenic influences. Results show that a record of 10 to 20 years is necessary for satisfactory estimates of regulatory low flows. Although it is possible to estimate a biologically based low flow from a record of less than 10 years, these estimates are highly uncertain and incorporate a bias that undermines water quality protection.  相似文献   
72.
The future of human health and that of all other species depends on the viability and sustainability of a host of environments and ecosystems. Human behaviours have profound effects (both positive and negative) on such ecosystems. Despite the obviousness of these statements, there remains a lack of clarity around the mechanisms for altering specific behaviours related to sustainability and their impact on environments. This paper offers a conceptual framework for identifying relations between human behaviour and ecosystem health and sustainability. We also discuss strategies for changing target behaviours in the context of a programme or policy planning. Finally, we draw on research that applies this adaptation to a small island community near Vancouver, Canada.  相似文献   
73.
The industrialization of agriculture not only alters the ways in which agricultural production occurs, but it also impacts the decisions farmers make in important ways. First, constraints created by the economic environment of farming limit what options a farmer has available to him. Second, because of the industrialization of agriculture and the resulting economic pressures it creates for farmers, the fact that decisions are constrained creates new ethical challenges for farmers. Having fewer options when faced with severe economic pressures is a very different situation for farmers than having many options available. We discuss the implications of constrained choice and show that it increases the likelihood that farmers will consider unethical behavior.  相似文献   
74.
A surface drinking water monitoring program for four corn (Zea mays L.) herbicides was conducted during 1995-2001. Stratified random sampling was used to select 175 community water systems (CWSs) within a 12-state area, with an emphasis on the most vulnerable sites, based on corn intensity and watershed size. Finished drinking water was monitored at all sites, and raw water was monitored at many sites using activated carbon, which was shown capable of removing herbicides and their degradates from drinking water. Samples were collected biweekly from mid-March through the end of August, and twice during the off-season. The analytical method had a detection limit of 0.05 microg L(-1) for alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] and 0.03 microg L(-1) for acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide]. Of the 16528 drinking water samples analyzed, acetochlor, alachlor, atrazine, and metolachlor were detected in 19, 7, 87, and 53% of the samples, respectively. During 1999-2001, samples were also analyzed for the presence of six major degradates of the chloroacetanilide herbicides, which were detected more frequently than their parent compounds, despite having higher detection limits of 0.1 to 0.2 microg L(-1). Overall detection frequencies were correlated with product use and environmental fate characteristics. Reservoirs were particularly vulnerable to atrazine, which exceeded its 3 microg L(-1) maximum contaminant level at 25 such sites during 1995-1999. Acetochlor annualized mean concentrations (AMCs) did not exceed its mitigation trigger (2 microg L(-1)) at any site, and comparisons of observed levels with standard measures of human and ecological hazards indicate that it poses no significant risk to human health or the environment.  相似文献   
75.
This paper examines the relationships between measurable watershed hydrologic features, base flow recession rates, and the Q7,10 low flow statistic (the annual minimum seven‐day average streamflow occurring once every 10 years on average). Base flow recession constants were determined by analyzing hydrograph recession data from 24 small (>130 km2), unregulated watersheds across five major physiographic provinces of Pennsylvania, providing a highly variable dataset. Geomorphic, hydrogeologic, and land use parameters were determined for each watershed. The base flow recession constant was found to be most strongly correlated to drainage density, geologic index, and ruggedness number (watershed slope); however, these three parameters are intercorrelated. Multiple regression models were developed for predicting the recession rate, and it was found that only two parameters, drainage density and hydrologic soil group, were required to obtain good estimates of the recession constant. Equations were also developed to relate the recession rates to Q7,10 per unit area, and to the Q7,10/Q50 ratio. Using these equations, estimates of base flow recession rates, Q7,10, and streamflow reduction under drought conditions can be made for small, ungaged basins across a wide range of physiography.  相似文献   
76.
One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data‐deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data‐deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data‐deficient assessments. To develop this, we reviewed 2879 data‐deficient assessments in 6 animal groups and identified 8 main justifications for assigning data‐deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data‐deficient species slipping unnoticed toward extinction.  相似文献   
77.
In the global campaign against biodiversity loss in forest ecosystems, land managers need to know the status of forest biodiversity, but practical guidelines for conserving biodiversity in forest management are lacking. A major obstacle is the incomplete understanding of the relationship between site primary productivity and plant diversity, due to insufficient ecosystem‐wide data, especially for taxonomically and structurally diverse forest ecosystems. We investigated the effects of site productivity (the site's inherent capacity to grow timber) on tree species richness across 19 types of forest ecosystems in North America and China through 3 ground‐sourced forest inventory data sets (U.S. Forest Inventory and Analysis, Cooperative Alaska Forest Inventory, and Chinese Forest Management Planning Inventory). All forest types conformed to a consistent and highly significant (P < 0.001) hump‐shaped unimodal relationship, of which the generalized coefficients of determination averaged 20.5% over all the forest types. That is, tree species richness first increased as productivity increased at a progressively slower rate, and, after reaching a maximum, richness started to decline. Our consistent findings suggest that forests of high productivity would sustain few species because they consist mostly of flat homogeneous areas lacking an environmental gradient along which a diversity of species with different habitats can coexist. The consistency of the productivity–biodiversity relationship among the 3 data sets we examined makes it possible to quantify the expected tree species richness that a forest stand is capable of sustaining, and a comparison between the actual species richness and the sustainable values can be useful in prioritizing conservation efforts.  相似文献   
78.
In arid regions of the developing world, pastoralists and livestock commonly inhabit protected areas, resulting in human–wildlife conflict. Conflict is inextricably linked to the ecological processes shaping relationships between pastoralists and native herbivores and carnivores. To elucidate relationships underpinning human–wildlife conflict, we synthesized 15 years of ecological and ethnographic data from Ikh Nart Nature Reserve in Mongolia's Gobi steppe. The density of argali (Ovis ammon), the world's largest wild sheep, at Ikh Nart was among the highest in Mongolia, yet livestock were >90% of ungulate biomass and dogs >90% of large‐carnivore biomass. For argali, pastoral activities decreased food availability, increased mortality from dog predation, and potentially increased disease risk. Isotope analyses indicated that livestock accounted for >50% of the diet of the majority of gray wolves (Canis lupus) and up to 90% of diet in 25% of sampled wolves (n = 8). Livestock composed at least 96% of ungulate prey in the single wolf pack for which we collected species‐specific prey data. Interviews with pastoralists indicated that wolves annually killed 1–4% of Ikh Nart's livestock, and pastoralists killed wolves in retribution. Pastoralists reduced wolf survival by killing them, but their livestock were an abundant food source for wolves. Consequently, wolf density appeared to be largely decoupled from argali density, and pastoralists had indirect effects on argali that could be negative if pastoralists increased wolf density (apparent competition) or positive if pastoralists decreased wolf predation (apparent facilitation). Ikh Nart's argali population was stable despite these threats, but livestock are increasingly dominant numerically and functionally relative to argali. To support both native wildlife and pastoral livelihoods, we suggest training dogs to not kill argali, community insurance against livestock losses to wolves, reintroducing key native prey species to hotspots of human–wolf conflict, and developing incentives for pastoralists to reduce livestock density.  相似文献   
79.
80.
Although hunting is a key component of subsistence strategies of many Amazonians, it is also one of the greatest threats to wildlife. Because indigenous reserves comprise over 20% of Amazonia, effective conservation often requires that conservation professionals work closely with indigenous groups to manage resource use. We used hunter‐generated harvesting data in spatially explicit biodemographic models to assess the sustainability of subsistence hunting of indigenous Waiwai in Guyana. We collected data through a hunter self‐monitoring program, systematic follows of hunters, and semistructured interviews. We used these data to predict future densities of 2 indicator species, spider monkeys (Ateles paniscus) and bearded sakis (Chiropotes sagulatus), under different scenarios of human population expansion and changing hunting technology. We used encounter rates from transect surveys and hunter catch‐per‐unit effort (CPUE) to validate model predictions. Paca (Cuniculus paca) (198 /year), Currosaw (Crax alector) (168), and spider monkey (117) were the most frequently harvested species. Predicted densities of spider monkeys were statistically indistinguishable from empirically derived transect data (Kolmogorov–Smirnov D = 0.67, p = 0.759) and CPUE (D = 0.32, p = 1.000), demonstrating the robustness of model predictions. Ateles paniscus and C. sagulatus were predicted to be extirpated from <13% of the Waiwai reserve in 20 years, even under the most intensive hunting scenarios. Our results suggest Waiwai hunting is currently sustainable, primarily due to their low population density and use of bow and arrow. Continual monitoring is necessary, however, particularly if human population increases are accompanied by a switch to shotgun‐only hunting. We suggest that hunter self‐monitoring and biodemographic modeling can be used effectively in a comanagement approach in which indigenous parabiologists continuously provide hunting data that is then used to update model parameters and validate model predictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号