首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
安全科学   1篇
废物处理   22篇
环保管理   2篇
综合类   3篇
基础理论   5篇
污染及防治   12篇
评价与监测   10篇
社会与环境   3篇
  2023年   3篇
  2022年   3篇
  2021年   1篇
  2019年   2篇
  2018年   6篇
  2017年   6篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1980年   1篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
31.

In this study, we evaluated, in a pioneering way, the influence of wavelengths from the decomposition of white light on the production and physicochemical properties of silver nanoparticles (AgNPs). Bearing in mind a process of green synthesis, an extract of the bracts of Bougainvillea glabra Choisy (BgC) was used, a species native to tropical and subtropical regions and frequently used in ornamentation, possessing in its photochemical composition, biomolecules capable of acting as reducing agents for convert Ag+ to Ag0. We used light-emitting diodes (LED) to obtain the desired wavelengths (violet, blue, green, yellow, orange, and red) in the test called rainbow, and we evaluated the obtaining of AgNPs compared to white LED light, nature, and absence of light. In the rainbow assay, we obtained a gradual increase in the intensity of the plasmonic band resonance from the red wavelength (0.124 ± 0.067 a.u.) to violet (0.680 ± 0.199 a.u.), indicating a higher reaction yield in obtaining AgNPs. Smaller hydrodynamic sizes (approximately 150 nm) at more energetic wavelengths (violet, blue, and green) about less energetic wavelengths (yellow, orange, and red) (approximately 400 nm) were obtained. Analysis by SEM microscopy, FTIR spectroscopy, and X-ray diffraction indicates the presence of silver nanoparticles in all LED colors used together with white LED light and Laboratory light (natural light). Due to the high environmental demand to remove pollutants from water sources, including textile dyes, we applied AgNPs/BgC to remove methylene blue (MB) dye from an aqueous solution. A minimum removal percentage greater than 65%, with emphasis on formulations synthesized by the colors of violet LED (84.27 ± 2.65%) and orange LED (85.91 ± 1.95%), was obtained.

  相似文献   
32.
33.
Jackfruit starch based biodegradable films containing lysozyme were characterized for their antimicrobial activity, thickness, solubility, water vapor permeability and mechanical properties. The biodegradable films had good appearance and antimicrobial activity against Micrococcus lysodeikticus. The thickness of the biodegradable films were not affected by the variation in pH, but the addition of lysozyme increased the thickness, the thickest films being those with the highest lysozyme concentrations. The variation in pH of the filmogenic solutions affected the solubility of the biodegradable films, water solubility being greatest at pH 7.0 and with the highest lysozyme concentration. The permeability of the biodegradable films was increased by incorporating lysozyme. The lysozyme concentration and pH variation caused changes in the mechanical properties. The addition of 8% lysozyme increased the tensile strength and Young’s modulus for all the pH values studied. With respect to the release of antimicrobial activity, the diffusion of lysozyme was shown to follow Fickian transport mechanism.  相似文献   
34.
In strategic end-of-life electrical and electronic equipment (EoL EEE) management, it has become important to not only avoid the negative environmental impacts but also enhance the positive effects of secondary resource utilization. This is especially true in emerging countries such as China, where medium- to long-term increases in the amount of EoL EEE generation are projected. This study aims to assess the resource availability potential for EoL EEE recycling based on penetration scenarios for formal and/or informal treatment options in China. We categorized substances contained in EoL television sets and personal computers into environmental, resource, and economic aspects under consideration of product transitions. Barium and copper have a high negative potential impact on human health and/or the ecosystem. Focusing on metals with a high resource potential, the resource availability is assessed under different treatment options using characterization factors identified through a life-cycle impact assessment method, the ReCiPe 2008. The results suggest that copper and lead recycling could alleviate the increase in mining costs of resource utilization. Scenario analysis for penetration of formal and informal recycling options indicated that the difference in the alleviated mining costs between the status quo and short-term transition projections until 2030 corresponds to 2.1–2.4 billion dollars.  相似文献   
35.
A common remedial technology for properties with subsurface soil and groundwater contamination is multiphase extraction (MPE). MPE involves the extraction of contaminated groundwater, free‐floating product, and contaminated soil vapor from the subsurface. A network of recovery wells conveys fluids to a vacuum pump and to the treatment system for the contaminated groundwater and soil vapor. This article describes a study of MPE operational data from nine similar remediation projects to determine the most important design parameters. Design equations from guidance manuals were used to estimate the expected radius of influence (ROI) based on measured field data. ROIs were calculated for the vapor flow rate through the subsurface and for the groundwater drawdown caused by the MPE remediation activities. The calculated ROIs were compared to the measured ROIs to corroborate the assumptions made in the calculations. Once it was established that the calculated and field‐measured ROIs were comparable, a sensitivity analysis determined ranges of different design and operational parameters that most affected the ROIs. © 2012 Wiley Periodicals, Inc.  相似文献   
36.
The São Francisco River is the largest river located entirely within Brazil, and water scarcity problems have been a major concern of Brazilian society and government. Water quality issues are also a concern and have worsened with the recent intensification of urbanization and industrialization. In this study, violations to water quality standards established by local legislation were calculated as a percentage for 26 selected parameters over a monitoring period of 14 years. The violation percentages were analyzed spatially using the Kruskal-Wallis test, followed by multiple comparison analysis. Temporal analysis was performed using the Mann-Kendall test and Spearman correlation. Some parameters could be identified as cause for concern due to high violation levels, such as the fecal coliform indicator (FCI) and phosphorus—both related to domestic and effluent disposal without treatment or with insufficient treatment—and color, turbidity, manganese, and total suspended solids—which can be affected by erosive processes of natural and anthropogenic causes. The study found that these violations are concentrated in the most urbanized and industrialized areas of the basin. Some metallic parameters, such as iron and arsenic violations, may be related to mining activities in the rich soil of the Iron Quadrangle area located within the Minas Gerais State. Trend analysis results indicated that most monitoring stations did not have significant modification (elevation or reduction) trends over time, which, together with the high violation percentages, might indicate the maintenance of a scenario of constant pressure upon water resources, in particular in those more urbanized areas.  相似文献   
37.
Foodborne transmission gastroenteritis (AGE) outbreak occurred during a celebration lunch in July, 2016, Brazil. All stool samples tested were positive for noroviruses (NoV) and phylogenetic analysis revealed that strains were genetically close to GII.17 Kawasaki_2014. These findings indicated circulation of NoV GII.17 Kawasaki_2014 in the Brazilian population, associated with AGE outbreak.  相似文献   
38.
This study evaluated the environmental impacts of sprayed-on asbestos, which had been used as insulation material in buildings, from multiple perspectives, mainly at the disposal stage. The health risks from asbestos emission and energy consumption were estimated. Two disposal scenarios were assumed for the asbestos: melting for reduced-risk disposal and ordinary packaging/landfilling. We estimated the asbestos emission and health risk in the case of packaging/landfilling, assuming uncontrolled management of the landfill site. A difficulty with introducing health-risk concepts into life cycle assessment (LCA) is the pulse–flux problem, which is discussed in the light of these estimations. In order to solve this problem, we proposed a method using a conversion factor representing exposure-dose/emission, and showed that emission could be converted into health risk. We also estimated the energy consumption for melting asbestos in the disposal stage, which can decrease the health risk. If we consider the energy consumption for the life cycle of asbestos, only a little energy is required for melting, compared with the large amount of energy saved in the use stage owing to the insulating effect of the asbestos. The trade-off relationship between health risk and energy consumption for the disposal scenarios indicated the need for weighting methods to handle trade-offs such as this. Received: July 2, 1998 / Accepted: December 20, 1999  相似文献   
39.
This study aimed to evaluate the emulsion stability of solutions containing exopolysaccharide and culture medium of a Sphingomonas sp. strain with various hydrophobic compounds. The exopolysaccharide characterized belongs to a sphingan group, however, not being a gellan gum as produced by certain Sphingomonas strains. In general, the emulsifying indexes found in this study were above 70% for gasoline, hexane, kerosene and used frying oil. Nonetheless, the best results were achieved in kerosene solutions, which showed an index of 80% after 24 h, remaining stable for more than 168 h in combinations with various EPS concentrations. Interestingly, diesel oil best results were singly achieved in solution pH of 11, showing an index of around 65%. Furthermore, hexane obtained an index of 100% after 24 h when culture medium was used. Thus, these findings highlight the use of EPS as a potential bioemulsifier agent to enhance hydrocarbon degradation and emulsification effects in environmental biotechnology.  相似文献   
40.

Biodiesel wash water is a contaminating industrial effluent that must be treated prior to disposal. The use of this effluent as a low-cost alternative cultivation medium for microalgae could represent a viable supplementary treatment. We cultivated 11 microalgae species with potential use for biodiesel production to assess their growth capacities in biodiesel industrial washing waters. Only Monoraphidium contortum, Ankistrodesmus sp., Chlorococcum sp., and one unidentified Chlorophyceae species grew effectively in that effluent. M. contortum showed the highest growth capacity and had the second highest fatty acid content (267.9 mg g−1 of DW), predominantly producing palmitic (20.9%), 7,10,13-hexadecatrienoic (14%), oleic (16.2%), linoleic (10.5%), and linolenic acids (23.2%). In the second phase of the experiment, the microalgae were cultivated in biodiesel wash water at 75% of its initial concentration as well as in WC (control) medium. After 21 days of cultivation, 25.8 and 7.2% of the effluent nitrate and phosphate were removed, respectively, and the chemical oxygen demand was diminished by 31.2%. These results suggest the possibility of cultivating biodiesel producing microalgae in industrial wash water effluents.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号