首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1619篇
  免费   350篇
  国内免费   495篇
安全科学   323篇
废物处理   27篇
环保管理   150篇
综合类   1301篇
基础理论   254篇
污染及防治   54篇
评价与监测   108篇
社会与环境   118篇
灾害及防治   129篇
  2024年   25篇
  2023年   41篇
  2022年   142篇
  2021年   135篇
  2020年   147篇
  2019年   117篇
  2018年   102篇
  2017年   83篇
  2016年   91篇
  2015年   128篇
  2014年   123篇
  2013年   145篇
  2012年   166篇
  2011年   126篇
  2010年   132篇
  2009年   125篇
  2008年   106篇
  2007年   137篇
  2006年   114篇
  2005年   82篇
  2004年   42篇
  2003年   34篇
  2002年   32篇
  2001年   31篇
  2000年   33篇
  1999年   9篇
  1998年   2篇
  1997年   2篇
  1996年   7篇
  1994年   1篇
  1992年   3篇
  1986年   1篇
排序方式: 共有2464条查询结果,搜索用时 109 毫秒
251.
Chemotaxis to water-soluble attractants is mainly controlled by ASE sensory neuron whose specification is regulated by che-1 in Caenorhabditis elegans. Our data suggested that exposure to high concentrations of metals, such as Pb, Cu, Ag, and Cr, would result in severe defects of chemotaxis to water-soluble attractants of NaCl, cAMP, and biotin. Moreover, the morphology of ASE neuron structures as observed by relative fluorescent intensities and relative size of fluorescent puncta of cell bodies, relative lengths of sensory endings in ASE neurons, and the expression patterns of che-1 were obviously altered in metal exposed animals when they meanwhile exhibited obvious chemotaxis defects to water-soluble attractants. In addition, the dendrite morphology could be noticeably changed in animals exposed to 150 mol/L of Pb, Cu, and Ag. Furthermore, we observed significant decreases of chemotaxis to water-soluble attractants in Pb exposed che-1 mutant at concentrations more than 2.5 mol/L, and in Cu, Ag, and Cr exposed che-1 mutant at concentrations more than 50 mol/L. Therefore, impairment of the ASE neuron structures and functions may largely contribute to the appearance of chemotaxis defects to water-soluble attractants in metal exposed nematodes.  相似文献   
252.
王继军  李慧  苏鑫  杜娜 《自然资源学报》2010,25(11):1887-1896
农业生态经济系统耦合是一个复杂的过程,是潜变量与潜变量、潜变量与可测变量及可测变量之间相互作用的结果,结构方程模型的建立很好地描述了这一复杂关系。通过对吴起县、安塞县和宝塔区共建的中尺度生态农业建设试验示范区、米脂县等3个典型区域所代表的黄土丘陵区及其各个区域农业生态经济系统结构方程模型的建立与运算,结果表明:在"退耕还林还草工程"等外力作用下,农业生态经济系统运行模式基本揭示了农业产业与农业资源相互耦合这一本质规律,但现状耦合模式并未充分利用农业资源,系统耦合效果较低。农业产业与农业资源对系统耦合的影响系数分别为0.54和0.16,农业产业和农业资源之间的相关系数只有0.28,即农业资源没有很好地支撑产业的发展,导致农业生态经济系统耦合效果不明显,存在着局部相悖的态势,潜伏了林草资源与其相关产业链网缺失现象。为此,需要强化农业产业与农业资源的互动过程,特别要发展林草及其相关产业,促进林草资源的有效利用,促使系统耦合效果的不断提高,增加经济效益。  相似文献   
253.
中国表层土壤有机质空间分布模拟分析方法研究   总被引:17,自引:2,他引:15  
气候变化背景下,对土壤有机碳的研究是目前大尺度上土壤性质研究的热点。基于第二次全国土壤普查5 374个典型土壤剖面数据,分析表层土壤有机质(20 cm)与环境因素的相关关系,利用多元回归模型和HASM模型结合的方法模拟中国国家尺度上表层土壤有机质含量的空间分布格局,探讨该方法的模拟误差,为国家尺度上有机碳的估算提供方法参考。研究结果表明,对350个检验点模拟结果的平均绝对误差和平均相对误差为15.61 g.kg-1和56.59%,与普通克里格法相比分别降低了1.61 g.kg-1和20.84%;对样点分布较少以及无样点的西北地区和台湾省的模拟结果也更符合实际情况。建模样点减少一半的情况下,模拟结果的平均绝对误差和平均相对误差仅分别增加了0.14 g.kg-1和1.07%。因此,论文方法可作为模拟国家尺度上有机质空间分布相对有效的方法,同时如何使模型解释更多的土壤有机质空间变异将是进一步提高模拟精度的关键。  相似文献   
254.
A2/O工艺中好氧污泥絮体的分形结构与理化特征分析   总被引:2,自引:2,他引:0  
采用图像法和沉降柱法分别研究了A2/O工艺中好氧污泥絮体的形貌、粒度分布、低维分形维数和沉降速率、有效密度、空隙率以及质量分形维数,并尝试探讨了上述相关性质与这些污泥宏观操作性质(沉降、压缩、脱水和稳定性)相关的各种理化指标以及胞外高分子物质(EPS)的含量之间的变化关系.结果表明,污泥絮体呈现不规则的形貌,表面具有空隙.其有效密度一般随着其粒径的增加而降低,而空隙率和沉降速率却呈现与有效密度相反的变化趋势,这些均表明了污泥絮体的分形结构的存在.2次所采集的污泥絮体的中位直径分别为248.81、 332.86 μm,有效密度的平均值分别为0.004 0、 0.007 2 g·cm-3,自由沉降速率的平均值分别为2.67、 4.79 mm·s-1,空隙率的平均值分别为0.94、 0.89,一维分形维数分别为1.03、 1.19,二维分形维数分别为1.64、 1.84,采用基于Logan经验公式的有效密度-最大直径的双对数关系确定的质量分形维数分别为1.74、 2.29.尽管第2次所采集的污泥絮体较为密实,但其表面粗糙程度却比第1次的低.此外,研究中发现絮凝能力较高或负电荷较高的A2/O好氧污泥絮体具有高的SVI和ZSV值;分形维数较低的污泥具有高的剪切敏感性和低絮体强度,相应的污泥稳定性低;EPS总量高的污泥脱水性能差,EPS中蛋白质含量高的污泥其表面电荷也较高.  相似文献   
255.
原生颗粒污泥单级自养脱氮工艺处理污泥压滤液的研究   总被引:1,自引:1,他引:0  
曹建平  杜兵  刘寅  秦永生 《环境科学》2009,30(10):2988-2994
在长期运行的处理污泥压滤液的气提亚硝化反应器中发现了单级自养脱氮反应,并形成了具有自养脱氮性能的原生颗粒污泥.以原生颗粒污泥启动并运行了单级自养脱氮反应器,对污泥压滤液进行脱氮处理取得了良好效果.进水总氮浓度为350 mg.L-1左右时,总氮平均去除率为74.81%,最高达86.92%,总氮平均去除负荷(以N计,下同)为0.68 kg.(m3.d)-1,最高达0.90 kg.(m3.d)-1.投加粉末活性炭后单级自养脱氮反应得到强化,运行稳定性得到提高.进水基质浓度、氮负荷及曝气量对自养脱氮反应影响较大.污泥压滤液中的有机物、pH值和碱度对单级自养脱氮反应影响较小.曝气量/ΔTN、曝气量/ΔNH4+-N及ΔALK/ΔTN比值可作为单级自养脱氮反应重要的运行指标.  相似文献   
256.
海岸带是重要海陆过渡带地貌单元与区域,兼受海陆动力双重作用与影响,包括不同类型的沉积相,经历复杂的动力沉积、地貌演变及灾变过程。海岸带调查涉及学科交叉融合,调查要素相对独立与内容多学科交叉并存。我国曾分别于1960年、1981年和2003年组织开展过全国海岸带综合调查工作,调查获取了大量丰硕成果。当前海岸带调查与研究过程中亦暴露出一些亟需突破问题,包括:1)海岸带存在大范围“盲区”,浅水易陷、礁石养殖等区域难以到达,成为海岸带数据“空白区”、调查“禁区”;2)我国海岸带观测平台数量少、分布零散,未形成综合有效观测网,导致长时间序列、多源准同步调查数据缺乏,难以准确把握海岸带变化规律,破解资源环境有关问题;3)海岸带数据获取智能化程度低,严重阻碍制约有关对策及时有效性;4)海岸带不同学科协同调查、交叉融合研究模式尚未建立,不能及时发现海岸带科学问题。今后海岸带调查将在海岸带高分辨率过程数据、全覆盖无死角实时动态数据获取技术,长时间序列综合数据采集平台建设,陆海空全天候立体化数据采集传输及快速智能决策,以及海岸带多学科交叉攻关研究等方面取得突破。  相似文献   
257.
2014年1月北京市大气重污染过程单颗粒物特征分析   总被引:2,自引:0,他引:2  
利用在线单颗粒物气溶胶质谱仪(SPAMS)对2014年1月北京市典型大气重污染过程进行了连续监测,分析了具有正负离子质谱信息的颗粒物共2248225个.同时,利用ART-2a神经网络分类方法并结合Matlab统计分析,将具有质谱信息的颗粒物归为10类,分别为:矿尘类颗粒物(Dust)、元素碳颗粒物(EC)、有机碳颗粒物(OC)、元素碳和有机碳混合颗粒物(ECOC)、钠钾颗粒物(NaK)、富钾颗粒物(K)、含氮有机物(KCN)、高分子有机物(MOC,Macromolecular OC)、多环芳烃类颗粒物(PAHs)和重金属类颗粒物(Metal).结合PM2.5质量浓度数据和HYSPLIT 4.0后向轨迹模型结果,将观测时间段划分为3个典型污染过程和1个清洁过程.结果显示,重污染期间OC、MOC和PAHs为最主要的颗粒物类型.最后,本文还比对分析了污染过程和清洁期间颗粒物的混合状态,结果表明,污染过程中硫酸盐和硝酸盐较清洁期间更容易与碳质颗粒物结合.  相似文献   
258.
为了深入分析环境因子对湿地CH4排放产生的影响,利用中型试验生态系对若尔盖典型泥炭地开展地下水位和土壤温度控制试验,比较不同条件下泥炭地2012年生长季(5—10月)CH4排放通量的月变化情况. 结果表明:高水位(土壤表面0 cm)下CH4排放通量最高,中水位(地表以下10 cm)下次之,低水位(地表以下20 cm)下最低;其中,10月CH4排放通量变化不明显,不同地下水位下泥炭地的CH4排放通量均在7月达到最大值,并且均呈明显的单峰曲线,高、中、低地下水位下CH4排放通量平均值分别为6.263 3、4.754 4和3.949 8 mg/(m2·h). 而且,在一定温度范围内,不同地下水位条件下CH4排放通量随土壤温度的升高均呈指数式增长. 其中,高水位下CH4排放通量对土壤温度变化最为敏感,中水位下次之,低水位下相对最不敏感. 研究显示,若尔盖泥炭地CH4排放通量表现出明显的季节性变化差异,并且季节性升温和涨水均会促进CH4排放通量的增加.   相似文献   
259.
采用单因素实验研究了各种操作因素对菌株Enterobacter sp.CV-v降解孔雀石绿的影响.结果表明,在供试碳源中,葡萄糖对脱色的促进效果最为显著,而供试氮源中,酵母粉对脱色的促进效果最优;同时,供试金属离子中,锰离子对脱色的促进效果最优.在p H=3.0~10.0、温度20~50℃之间时,菌株CV-v对孔雀石绿的12 h脱色率在90%以上.此外,该菌株可在6 h内完全脱色浓度低于500 mg·L-1的孔雀石绿.动力学实验结果表明,该菌株对孔雀石绿脱色的动力学数据与一级动力学模型拟合度最好(R2=0.9755).酶分析实验结果表明,锰过氧化物酶和孔雀石绿还原酶可能与菌株CV-v降解孔雀石绿相关.此外,代谢产物分析实验结果表明,菌株CV-v降解孔雀石绿的主要产物为二甲氨基二苯甲酮和4-羟基-N,N-二甲基苯铵.  相似文献   
260.
利用紫外光谱结合偏最小二乘法(PLS)建立了海水硝酸盐浓度计算模型,并利用间隔偏最小二乘法(interval PLS,iPLS)对建模区间进行了优化。相比全波段建模,优化后模型校正集均方根误差(RMSECV)从39.1降低到9.83。同时利用35个预测集样本对iPLS优化模型进行验证,iPLS优化模型将预测样本平均相对偏差从3.23%降低到1.81%。研究结果表明,相比全波段建模,利用iPLS进行建模波长区间优化,不仅减少了自变量个数,简化了运算,同时提高了模型预测准确度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号