首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5129篇
  免费   141篇
  国内免费   64篇
安全科学   283篇
废物处理   176篇
环保管理   1294篇
综合类   553篇
基础理论   1408篇
环境理论   8篇
污染及防治   1042篇
评价与监测   336篇
社会与环境   179篇
灾害及防治   55篇
  2023年   59篇
  2022年   55篇
  2021年   59篇
  2020年   63篇
  2019年   72篇
  2018年   124篇
  2017年   138篇
  2016年   183篇
  2015年   129篇
  2014年   161篇
  2013年   419篇
  2012年   237篇
  2011年   313篇
  2010年   207篇
  2009年   246篇
  2008年   267篇
  2007年   272篇
  2006年   241篇
  2005年   203篇
  2004年   190篇
  2003年   156篇
  2002年   149篇
  2001年   95篇
  2000年   99篇
  1999年   72篇
  1998年   76篇
  1997年   63篇
  1996年   69篇
  1995年   82篇
  1994年   76篇
  1993年   70篇
  1992年   63篇
  1991年   43篇
  1990年   37篇
  1989年   37篇
  1988年   32篇
  1987年   43篇
  1986年   41篇
  1985年   40篇
  1984年   47篇
  1983年   45篇
  1982年   55篇
  1981年   44篇
  1980年   32篇
  1979年   18篇
  1978年   30篇
  1977年   17篇
  1976年   15篇
  1972年   8篇
  1971年   9篇
排序方式: 共有5334条查询结果,搜索用时 15 毫秒
551.
Objectives: Engaging in active transport modes (especially walking) is a healthy and environmentally friendly alternative to driving and may be particularly beneficial for older adults. However, older adults are a vulnerable group: they are at higher risk of injury compared with younger adults, mainly due to frailty and may be at increased risk of collision due to the effects of age on sensory, cognitive, and motor abilities. Moreover, our population is aging, and there is a trend for the current cohort of older adults to maintain mobility later in life compared with previous cohorts. Though these trends have serious implications for transport policy and safety, little is known about the contributing factors and injury outcomes of pedestrian collision. Further, previous research generally considers the older population as a homogeneous group and rarely considers the increased risks associated with continued ageing.

Method: Collision characteristics and injury outcomes for 2 subgroups of older pedestrians (65–74 years and 75+ years) were examined by extracting data from the state police–reported crash dataset and hospital admission/emergency department presentation data over the 10-year period between 2003 and 2012. Variables identified for analysis included pedestrian characteristics (age, gender, activity, etc.), crash location and type, injury characteristics and severity, and duration of hospital stay. A spatial analysis of crash locations was also undertaken to identify collision clusters and the contribution of environmental features on collision and injury risk.

Results: Adults over 65 years were involved in 21% of all pedestrian collisions. A high fatality rate was found among older adults, particularly for those aged 75 years and older: this group had 3.2 deaths per 100,000 population, compared to a rate of 1.3 for 65- to 74-year-olds and 0.7 for adults below 65 years of age. Older pedestrian injuries were most likely to occur while crossing the carriageway; they were also more likely to be injured in parking lots, at driveway intersections, and on sidewalks compared to younger cohorts. Spatial analyses revealed older pedestrian crash clusters on arterial roads in urban shopping precincts. Significantly higher rates of hospital admissions were found for pedestrians over the age of 75 years and for abdominal, head, and neck injuries; conversely, older adults were underrepresented in emergency department presentations (mainly lower and upper extremity injuries), suggesting an increased severity associated with older pedestrian injuries. Average length of hospital stay also increased with increasing age.

Conclusion: This analysis revealed age differences in collision risk and injury outcomes among older adults and that aggregate analysis of older pedestrians can distort the significance of risk factors associated with older pedestrian injuries. These findings have implications that extend to the development of engineering, behavioral, and enforcement countermeasures to address the problems faced by the oldest pedestrians and reduce collision risk and improve injury outcomes.  相似文献   
552.
Objective: The objective of this study was to discuss the influence of the pre-impact posture to the response of a finite element human body model (HBM) in frontal impacts.

Methods: This study uses previously published cadaveric tests (PMHS), which measured six realistic pre-impact postures. Seven postured models were created from the THUMS occupant model (v4.0): one matching the standard UMTRI driving posture as it was the target posture in the experiments, and six matching the measured pre-impact postures. The same measurements as those obtained during the cadaveric tests were calculated from the simulations, and biofidelity metrics based on signals correlation (CORA) were established to compare the response of the seven models to the experiments.

Results: The HBM responses showed good agreement with the PMHS responses for the reaction forces (CORA = 0.80 ± 0.05) and the kinematics of the lower part of the torso but only fair correlation was found with the head, the upper spine, rib strains (CORA= 0.50 ± 0.05) and chest deflections (CORA = 0.67 ± 0.08). All models sustained rib fractures, sternal fracture and clavicle fracture. The average number of rib fractures for all the models was 5.3 ± 1.0, lower than in the experiments (10.8 ± 9.0).

Variation in pre-impact posture greatly altered the time histories of the reaction forces, deflections and the rib strains, mainly in terms of time delay, but no definite improvement in HBM response or injury prediction was observed. By modifying only the posture of the HBM, the variability in the impact response was found to be equivalent to that observed in the experiments. The postured HBM sustained from 4 to 8 rib fractures, confirming that the pre-impact posture influenced the injury outcome predicted by the simulation.

Conclusions: This study tries to answer an important question: what is the effect of occupant posture on kinematics and kinetics. Significant differences in kinematics observed between HBM and PMHS suggesting more coupling between the pelvis and the spine for the models which makes the model response very sensitive to any variation in the spine posture. Consequently, the findings observed for the HBM cannot be extended to PMHS. Besides, pre-impact posture should be carefully quantified during experiments and the evaluation of HBM should take into account the variation in the predicted impact response due to the variation in the model posture.  相似文献   
553.
554.
Epps et al. (2013) derived Curve Number (CN) values for two forested headwater watersheds in the Lower Coastal Plain of South Carolina during the 2008‐2011 period from rainfall‐runoff data, resulting in 23 events for the Upper Debidue Creek (UDC) watershed and in 20 events for Watershed 80 (WS80). D'Asaro and Grillone analyzed the P, CN data of the UDC watershed finding an evident “complacent” behavior, characterized by a declining CN with increasing P but without approaching a stable value at large storms. In this case, the traditional runoff CN equation does not fit well with the rainfall‐runoff data that indicate a partial source area watershed behavior and are more aptly modeled by the equation introduced by D'Asaro and Grillone (2012), who introduced a C parameter in the well‐known runoff CN formula. The C value, that represents the source area (fraction of drainage area) of the basin that produces runoff with a fixed CN < 100, is here considered to vary with the water table elevation (WTE), to which it is well correlated.  相似文献   
555.
Rapid response vertical profiling instrumentation was used to document spatial variability and patterns in a small urban lake, Onondaga Lake, associated with multiple drivers. Paired profiles of temperature, specific conductance (SC), turbidity (Tn), fluorometric chlorophyll a (Chlf), and nitrate nitrogen (NO3?) were collected at >30 fixed locations (a “gridding”) weekly, over the spring to fall interval of several years. These gridding data are analyzed (1) to characterize phytoplankton (Chlf) patchiness in the lake's upper waters, (2) to establish the representativeness of a single long‐term site for monitoring lake‐wide conditions, and (3) to resolve spatial patterns of multiple tracers imparted by buoyancy effects of inflows. Multiple buoyancy signatures were resolved, including overflows from less dense inflows, and interflows to metalimnetic depths and underflows to the bottom from the plunging of more dense inputs. Three different metrics had utility as tracers in depicting the buoyancy signatures as follows: (1) SC, for salinity‐enriched tributaries and the more dilute river that receives the lake's outflow, (2) Tn, for the tributaries during runoff events, and (3) NO3?, for the effluent of a domestic waste treatment facility and from the addition of NO3? solution to control methyl mercury. The plunging inflow phenomenon, which frequently prevailed, has important management implications.  相似文献   
556.
557.
558.
The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards, and requires expensive programs for its prevention. The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments. The study was carried out based on lab-scale experiments and batch tests using real sewer sediments. The intermittent nitrate dosing mode and the optimal control condition were investigated. The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment. The oxidation–reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S(nitrate/sulfide)ratio with slight excess nitrate is necessary for optimal conditions of efficient sulfide control with lower carbon source loss. The optimal control condition is feasible for the sulfide elimination in sewer systems.  相似文献   
559.
560.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号