首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16276篇
  免费   202篇
  国内免费   136篇
安全科学   478篇
废物处理   596篇
环保管理   2295篇
综合类   3122篇
基础理论   4072篇
环境理论   12篇
污染及防治   3977篇
评价与监测   988篇
社会与环境   948篇
灾害及防治   126篇
  2022年   125篇
  2021年   131篇
  2020年   112篇
  2019年   137篇
  2018年   207篇
  2017年   246篇
  2016年   339篇
  2015年   287篇
  2014年   378篇
  2013年   1368篇
  2012年   486篇
  2011年   648篇
  2010年   512篇
  2009年   576篇
  2008年   651篇
  2007年   678篇
  2006年   633篇
  2005年   518篇
  2004年   493篇
  2003年   509篇
  2002年   448篇
  2001年   548篇
  2000年   432篇
  1999年   249篇
  1998年   201篇
  1997年   198篇
  1996年   213篇
  1995年   223篇
  1994年   219篇
  1993年   212篇
  1992年   219篇
  1991年   207篇
  1990年   211篇
  1989年   178篇
  1988年   157篇
  1987年   137篇
  1986年   162篇
  1985年   163篇
  1984年   168篇
  1983年   166篇
  1982年   160篇
  1981年   172篇
  1980年   153篇
  1979年   147篇
  1978年   112篇
  1977年   124篇
  1974年   110篇
  1973年   92篇
  1972年   108篇
  1971年   89篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Abstract

To increase the operating lifetime of landfills and to lower leachate treatment costs, an increasing number of municipal solid waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. Landfill gas composition, respiration rates, and subsidence were measured for 400 days in 200-L tanks filled with fresh waste materials to compare the relative effectiveness of the two treatments. Tanks were prepared to provide the following conditions: (1) air injection and leachate recirculation (aerobic), (2) leachate recirculation (anaerobic), and (3) no treatment (anaerobic). Respiration tests on the aerobic wet tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Aerobic wet tanks produced, on average, 6 mol of carbon dioxide (CO2)/kg of MSW as compared with anaerobic wet tanks, which produced 2.2 mol methane/kg of MSW and 2.0 mol CO2/kg methane. Over the test period, the aerobic tanks settled on average 35%, anaerobic tanks settled 21.7%, and the no-treatment tank settled 7.5%, equivalent to overall mass loss in the corresponding reactors. Aerobic tanks reduced stabilization time and produced negligible odor compared with anaerobic tanks, possibly because of the 2 orders of magnitude lower leachate ammonia levels in the aerobic tank. Both treatment regimes provide the opportunity for disposal and remediation of liquid waste.  相似文献   
972.
Abstract

Although it has long been recognized that road and building construction activity constitutes an important source of particulate matter (PM) emissions throughout the United States, until recently only limited research has been directed to its characterization. This paper presents the results of PM10 and PM2.5 (particles ≤10 μm and ≤2.5 μm in aerodynamic diameter, respectively) emission factor development from the onsite testing of component operations at actual construction sites during the period 1998 –2001. Much of the testing effort was directed at earthmoving operations with scrapers, because earthmoving is the most important contributor of PM emissions across the construction industry. Other sources tested were truck loading and dumping of crushed rock and mud and dirt carryout from construction site access points onto adjacent public paved roads. Also tested were the effects of watering for control of scraper travel routes and the use of paved and graveled aprons at construction site access points for reducing mud and dirt carryout. The PM10 emissions from earthmoving were found to be up to an order of magnitude greater than predicted by AP-42 emission factors drawn from other industries. As expected, the observed PM2.5:PM10 emission factor ratios reflected the relative importance of the vehicle exhaust and the resuspended dust components of each type of construction activity. An unexpected finding was that PM2.5 emissions from mud and dirt carryout were much less than anticipated. Finally, the control efficiency of watering of scraper travel routes was found to closely follow a bilinear moisture model.  相似文献   
973.
A method of predicting point and path-averaged ambient air VOC concentrations is described. This method was developed for the case of a plume generated from a single point source, and is based on the relationship between wind directional frequency and concentration. One-minute means of wind direction and wind speed were used as inputs to a Gaussian dispersion model to develop this relationship.

Both FTIR spectrometry and a whole-air sampling method were used to monitor VOC plumes during simulated field tests. One test set was also conducted using only whole-air samplers deployed in a closely-spaced network, thus providing an evaluation of the prediction technique free of any bias that might exist between the two analytical methods.

Correlations between observed point concentrations and wind directional frequencies were significant at the 0.05 level in most cases. Predicted path-integrated concentrations, based on observed point concentrations and meteorological data, were strongly correlated with observed values. Predicted point concentrations, based on observed path-integrated concentrations and meteorological data, accurately reflected the location and magnitude of the highest concentrations from each test, as well as the shape of the concentration-versus-crosswind distance curve.  相似文献   
974.
975.
976.
Recent toxicological results highlight the importance of separating exposure to indoor- and outdoor-generated particles, due to their different physicochemical and toxicological properties. In this framework, a number of studies have attempted to estimate the relative contribution of particles of indoor and outdoor origins to indoor concentrations, using either statistical analysis of indoor and outdoor concentration time-series or mass balance equations. The aim of this work is to review and compare the methodologies developed in order to determine the ambient particle infiltration factor (F INF) (i.e., the fraction of ambient particles that enter indoors and remains suspended). The different approaches are grouped into four categories according to their methodological principles: (1) steady-state assumption using the steady-state form of the mass balance equation; (2) dynamic solution of the mass balance equation using complex statistical techniques; (3) experimental studies using conditions that simplify model calculations (e.g., decreasing the number of unknowns); and (4) infiltration surrogates using a particulate matter (PM) constituent with no indoor sources to act as surrogate of indoor PM of outdoor origin. Examination of the various methodologies and results reveals that estimating infiltration parameters is still challenging. The main difficulty lies in the separate calculation of penetration efficiency (P) and deposition rate (k). The values for these two parameters that are reported in the literature vary significantly. Deposition rate presents the widest range of values, both between studies and size fractions. Penetration efficiency seems to be more accurately calculated through the application of dynamic models. Overall, estimates of the infiltration factor generated using dynamic models and infiltration surrogates show good agreement. This is a strong argument in favor of the latter methodology, which is simple and easy to apply when chemical speciation data are available.

Implications: ?Taking into account that increased health risks may be related with ambient particles, a reliable estimation of the main parameters governing ambient particle infiltration indoors may assist towards the development of appropriate regulation and control measures, targeted to specific sources/factors contributing to increased exposures. The overall study of the methodological approaches estimating particle infiltration indoors suggests that dynamic models provide a more complete and realistic picture of ambient particle infiltration indoors, whereas the use of specific PM constituents to act as surrogates of indoor particles of outdoor origin seems also a promising new methodology.  相似文献   
977.
Carbon tetrachloride (CTC), tetrachloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) were four of the most widely used cleaning and degreasing solvents in the United States. These compounds were also used in a wide variety of other applications. The history of the production and use of these four compounds is linked to the development and growth of the United States' synthetic organic chemical industry, and historical events that affected the development and use of chlorinated solvents in general. Part 1 of this article includes a discussion of the historical background common to each of the four solvents, followed by discussion on the history of CTC and PCE. In the early years of the 20th century, CTC became the first of the four solvents to come into widespread use. CTC was used as a replacement for petroleum distillates in the dry-cleaning industry, but was later replaced by PCE. In the 1990s, CTC was phased out under the Montreal Protocol due to its role in stratospheric ozone depletion.  相似文献   
978.
Community-based collaborative groups involved in public natural resource management are assuming greater roles in planning, project implementation, and monitoring. This entails the capacity of collaborative groups to develop and sustain new organizational structures, processes, and strategies, yet there is a lack of understanding what constitutes collaborative capacity. In this paper, we present a framework for assessing collaborative capacities associated with community-based public forest management in the US. The framework is inductively derived from case study research and observations of 30 federal forest-related collaborative efforts. Categories were cross-referenced with literature on collaboration across a variety of contexts. The framework focuses on six arenas of collaborative action: (1) organizing, (2) learning, (3) deciding, (4) acting, (5) evaluating, and (6) legitimizing. Within each arena are capacities expressed through three levels of social agency: individuals, the collaborative group itself, and participating or external organizations. The framework provides a language and set of organizing principles for understanding and assessing collaborative capacity in the context of community-based public forest management. The framework allows groups to assess what capacities they already have and what more is needed. It also provides a way for organizations supporting collaboratives to target investments in building and sustaining their collaborative capacities. The framework can be used by researchers as a set of independent variables against which to measure collaborative outcomes across a large population of collaborative efforts.  相似文献   
979.
Energy Systems Theory (EST) provides a framework for understanding and interpreting sustainability. EST implies that "what is sustainable" for a system at any given level of organization is determined by the cycles of change originating in the next larger system and within the system of concern. The pulsing paradigm explains the ubiquitous cycles of change that apparently govern ecosystems, rather than succession to a steady state that is then sustainable. Therefore, to make robust decisions among environmental policies and alternatives, decision-makers need to know where their system resides in the cycles of change that govern it. This theory was examined by performing an emergy evaluation of the sustainability of a regional system, the San Luis Basin (SLB), CO. By 1980, the SLB contained a climax stage agricultural system with well-developed crop and livestock production along with food and animal waste processing. The SLB is also a hinterland in that it exports raw materials and primary products (exploitation stage) to more developed areas. Emergy indices calculated for the SLB from 1995 to 2005 revealed changes in the relative sustainability of the system over this time. The sustainability of the region as indicated by the renewable emergy used as a percent of total use declined 4%, whereas, the renewable carrying capacity declined 6% over this time. The Emergy Sustainability Index (ESI) showed the largest decline (27%) in the sustainability of the region. The total emergy used by the SLB, a measure of system well-being, was fairly stable (CV?=?0.05). In 1997, using renewable emergy alone, the SLB could support 50.7% of its population at the current standard of living, while under similar conditions the U.S. could support only 4.8% of its population. In contrast to other indices of sustainability, a new index, the Emergy Sustainable Use Index (ESUI), which considers the benefits gained by the larger system compared to the potential for local environmental damage, increased 34% over the period.  相似文献   
980.
Modeling is a common practice to evaluate factors affecting water quality in environmental systems impaired by point and nonpoint losses of N and P. Nevertheless, in situations with inadequate information, such as ungauged basins, a balance between model complexity and data availability is necessary. In this paper, we applied a simplified analytical model to an artificially drained floodplain in central-western Italy to evaluate the importance of different nutrient sources and in-stream retention processes and to identify critical source areas. We first considered only a set of chemical concentrations in water measured from February through May 2008 and from November 2008 through February 2009. We then broadened available data to include water discharge and hydraulic-head measurements to construct a hydrogeological model using MODFLOW-2000 and to evaluate the reliability of the simplified method. The simplified model provided acceptable estimates of discharge (ranging from 0.03-0.75 m s) and diffuse nutrient inputs from water table discharge and in-stream retention phenomena. Estimates of PO-P and total P retention (ranging from 1.0 to 0.6 μg m s and from 1.18 to 0.95 μg m s for PO-P and total P, respectively) were consistent with the range of variability in literature data. In contrast, the higher temporal variability of nitrate concentrations decreased model accuracy, suggesting the need for more intensive monitoring. The model also separated the dynamics of different reaches of the drainage network and identified zones considered critical source areas and buffer zones where pollutant transport is reduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号