首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16274篇
  免费   202篇
  国内免费   136篇
安全科学   478篇
废物处理   596篇
环保管理   2295篇
综合类   3122篇
基础理论   4072篇
环境理论   12篇
污染及防治   3975篇
评价与监测   988篇
社会与环境   948篇
灾害及防治   126篇
  2022年   123篇
  2021年   131篇
  2020年   112篇
  2019年   137篇
  2018年   207篇
  2017年   246篇
  2016年   339篇
  2015年   287篇
  2014年   378篇
  2013年   1368篇
  2012年   486篇
  2011年   648篇
  2010年   512篇
  2009年   576篇
  2008年   651篇
  2007年   678篇
  2006年   633篇
  2005年   518篇
  2004年   493篇
  2003年   509篇
  2002年   448篇
  2001年   548篇
  2000年   432篇
  1999年   249篇
  1998年   201篇
  1997年   198篇
  1996年   213篇
  1995年   223篇
  1994年   219篇
  1993年   212篇
  1992年   219篇
  1991年   207篇
  1990年   211篇
  1989年   178篇
  1988年   157篇
  1987年   137篇
  1986年   162篇
  1985年   163篇
  1984年   168篇
  1983年   166篇
  1982年   160篇
  1981年   172篇
  1980年   153篇
  1979年   147篇
  1978年   112篇
  1977年   124篇
  1974年   110篇
  1973年   92篇
  1972年   108篇
  1971年   89篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
991.
We assessed the aqueous toxicity mitigation capacity of a hydrologically managed floodplain wetland following a synthetic runoff event amended with a mixture of sediments, nutrients (nitrogen and phosphorus), and pesticides (atrazine, S-metolachlor, and permethrin) using 48-h Hyalella azteca survival and phytoplankton pigment, chlorophyll a. The runoff event simulated a 1 h, 1.27 cm rainfall event from a 16 ha agricultural field. Water (1 L) was collected every 30 min within the first 4 h, every 4 h until 48 h, and on days 5, 7, 14, 21, and 28 post-amendment at distances of 0, 10, 40, 300 and 500 m from the amendment point for chlorophyll a, suspended sediment, nutrient, and pesticide analyses. H. azteca 48-h laboratory survival was assessed in water collected at each site at 0, 4, 24, 48 h, 5 d and 7 d. Greatest sediment, nutrient, and pesticide concentrations occurred within 3 h of amendment at 0 m, 10 m, 40 m, and 300 m downstream. Sediments and nutrients showed little variation at 500 m whereas pesticides peaked within 48 h but at <15% of upstream peak concentrations. After 28 d, all mixture components were near or below pre-amendment concentrations. H. azteca survival significantly decreased within 48 h of amendment up to 300 m in association with permethrin concentrations. Chlorophyll a decreased within the first 24 h of amendment up to 40 m primarily in conjunction with herbicide concentrations. Variations in chlorophyll a at 300 and 500 m were associated with nutrients. Managed floodplain wetlands can rapidly and effectively trap and process agricultural runoff during moderate rainfall events, mitigating impacts to aquatic invertebrates and algae in receiving aquatic systems.  相似文献   
992.
Minimization of the formation of disinfection by-products   总被引:1,自引:0,他引:1  
The drinking water industry is required to minimize DBPs levels while ensuring adequate disinfection. In this study, efficient and appropriate treatment scheme for the reduction of disinfection by-product (DBPs) formation in drinking water containing natural organic matter has been established. This was carried out by the investigation of different treatment schemes consisting of enhanced coagulation, sedimentation, disinfection by using chlorine dioxide/ozone, filtration by sand filter, or granular activated carbon (GAC). Bench scale treatment schemes were applied on actual samples from different selected sites to identify the best conditions for the treatment of water. Samples were collected from effluent of each step in the treatment train in order to analyze pH, UV absorbance at 254 nm (UVA254), specific UV absorbance at 254 nm (SUVA254), dissolved organic carbon (DOC), haloacetic acids (HAAs) and trihalomethanes (THMs). The obtained results indicated that using pre-ozonation/enhanced coagulation/activated carbon filtration treatment train appears to be the most effective method for reducing DBPs precursors in drinking water treatment.  相似文献   
993.
994.
The impact of co-solutes on sorption of tetrachloroethene (PCE) by two porous media with low organic-carbon contents was examined by conducting batch experiments. The two media (Borden and Eustis) have similar physical properties, but significantly different organic-carbon (OC) contents. Sorption of PCE was nonlinear for both media, and well-described by the Freundlich equation. For the Borden aquifer material (OC = 0.03%), the isotherms measured with a suite of co-solutes present (1,2-dichlorobenzene, bromoform, carbon tetrachloride, and hexachloroethane) were identical to the isotherms measured for PCE alone. These results indicate that there was no measurable impact of the co-solutes on PCE sorption for this system. In contrast to the Borden results, there was a measurable reduction in sorption of PCE by the Eustis soil (OC = 0.38%) in the presence of the co-solutes. The organic-carbon fractions of both media contain hard-carbon components, which have been associated with the manifestation of nonideal sorption phenomena. The disparity in results observed for the two media may relate to relative differences in the magnitude and geochemical nature of these hard-carbon components.  相似文献   
995.
Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity.  相似文献   
996.
Ragazzi M  Rada EC 《Chemosphere》2012,89(6):694-701
In the sector of municipal solid waste management the debate on the performances of conventional and novel thermo-chemical technologies is still relevant. When a plant must be constructed, decision makers often select a technology prior to analyzing the local environmental impact of the available options, as this type of study is generally developed when the design of the plant has been carried out. Additionally, in the literature there is a lack of comparative analyses of the contributions to local air pollution from different technologies. The present study offers a multi-step approach, based on pollutant emission factors and atmospheric dilution coefficients, for a local comparative analysis. With this approach it is possible to check if some assumptions related to the advantages of the novel thermochemical technologies, in terms of local direct impact on air quality, can be applied to municipal solid waste treatment. The selected processes concern combustion, gasification and pyrolysis, alone or in combination. The pollutants considered are both carcinogenic and non-carcinogenic. A case study is presented concerning the location of a plant in an alpine region and its contribution to the local air pollution. Results show that differences among technologies are less than expected. Performances of each technology are discussed in details.  相似文献   
997.
Activated carbon (AC) amendment is an innovative method for the in situ remediation of contaminated soils. A field-scale AC amendment of either 2% powder or granular AC (PAC and GAC) to a PAH contaminated soil was carried out in Norway. The PAH concentration in drainage water from the field plot was measured with a direct solvent extraction and by deploying polyoxymethylene (POM) passive samplers. In addition, POM samplers were dug directly in the AC amended and unamended soil in order to monitor the reduction in free aqueous PAH concentrations in the soil pore water. The total PAH concentration in the drainage water, measured by direct solvent extraction of the water, was reduced by 14% for the PAC amendment and by 59% for GAC, 12 months after amendment. Measurements carried out with POM showed a reduction of 93% for PAC and 56% for GAC. The free aqueous PAH concentration in soil pore water was reduced 93% and 76%, 17 and 28 months after PAC amendment, compared to 84% and 69% for GAC. PAC, in contrast to GAC, was more effective for reducing freely dissolved concentrations than total dissolved ones. This could tentatively be explained by leaching of microscopic AC particles from PAC. Secondary chemical effects of the AC amendment were monitored by considering concentration changes in dissolved organic carbon (DOC) and nutrients. DOC was bound by AC, while the concentrations of nutrients (NO(3), NO(2), NH(4), PO(4), P-total, K, Ca and Mg) were variable and likely affected by external environmental factors.  相似文献   
998.
At the former nuclear weapon production site in Hanford, WA, caustic radioactive tank waste leaks into subsurface sediments and causes dissolution of quartz and aluminosilicate minerals, and precipitation of sodalite and cancrinite. This work examines changes in pore structure due to these reactions in a previously-conducted column experiment. The column was sectioned and 2D images of the pore space were generated using backscattered electron microscopy and energy dispersive X-ray spectroscopy. A pre-precipitation scenario was created by digitally removing mineral matter identified as secondary precipitates. Porosity, determined by segmenting the images to distinguish pore space from mineral matter, was up to 0.11 less after reaction. Erosion-dilation analysis was used to compute pore and throat size distributions. Images with precipitation had more small and fewer large pores. Precipitation decreased throat sizes and the abundance of large throats. These findings agree with previous findings based on 3D X-ray CMT imaging, observing decreased porosity, clogging of small throats, and little change in large throats. However, 2D imaging found an increase in small pores, mainly in intragranular regions or below the resolution of the 3D images. Also, an increase in large pores observed via 3D imaging was not observed in the 2D analysis. Changes in flow conducting throats that are the key permeability-controlling features were observed in both methods.  相似文献   
999.
To assess physiological impacts of biosolids on trees, metal contaminants and phytochelatins were measured in Douglas-fir stands amended with biosolids in 1982. A subsequent greenhouse study compared these same soils to soils amended with fresh wastewater treatment plant biosolids. Biosolids-amended field soils had significantly higher organic matter, lower pH, and elevated metals even after 25 years. In the field study, no beneficial growth effects were detected in biosolids-amended stands and in the greenhouse study both fresh and historic biosolids amendments resulted in lower seedling growth rates. Phytochelatins - bioindicators of intracellular metal stress - were elevated in foliage of biosolids-amended stands, and significantly higher in roots of seedlings grown with fresh biosolids. These results demonstrate that biosolids amendments have short- and long-term negative effects that may counteract the expected tree growth benefits.  相似文献   
1000.

Background aim and scope  

Though the tidal Anacostia River, a highly polluted riverine system, has been well characterized with regard to contaminants, its overall resident bacterial populations have remained largely unknown. Improving the health of this system will rely upon enhanced understanding of the diversity and functions of these communities. Bacterial DNA was extracted from archived (AR, year 2000) and fresh sediments (RE, year 2006) collected from various locations within the Anacostia River. Using a combination of metabolic and molecular techniques, community snapshots of sediment bacterial diversity and activity were produced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号