首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11358篇
  免费   79篇
  国内免费   83篇
安全科学   283篇
废物处理   500篇
环保管理   1433篇
综合类   2487篇
基础理论   2558篇
环境理论   5篇
污染及防治   2952篇
评价与监测   685篇
社会与环境   562篇
灾害及防治   55篇
  2022年   91篇
  2021年   96篇
  2019年   69篇
  2018年   149篇
  2017年   130篇
  2016年   222篇
  2015年   173篇
  2014年   243篇
  2013年   820篇
  2012年   304篇
  2011年   428篇
  2010年   338篇
  2009年   396篇
  2008年   428篇
  2007年   491篇
  2006年   432篇
  2005年   352篇
  2004年   368篇
  2003年   373篇
  2002年   332篇
  2001年   428篇
  2000年   312篇
  1999年   205篇
  1998年   115篇
  1997年   123篇
  1996年   108篇
  1995年   154篇
  1994年   148篇
  1993年   123篇
  1992年   130篇
  1991年   149篇
  1990年   119篇
  1989年   127篇
  1988年   132篇
  1987年   114篇
  1986年   83篇
  1985年   100篇
  1984年   125篇
  1983年   125篇
  1982年   123篇
  1981年   97篇
  1980年   93篇
  1979年   106篇
  1978年   89篇
  1977年   85篇
  1976年   78篇
  1975年   90篇
  1974年   101篇
  1972年   69篇
  1965年   74篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
221.
Anaerobic chemostats were used to investigate the effects of organic and hydraulic shock loads on the production of soluble microbial products (SMP). Production of SMP was found to increase during glucose spikes, reaching up 15% of the influent chemical oxygen demand. These SMP appear to be utilization-associated products produced as a result of the temporarily high organic load, and chemical analysis and ultrafiltration experiments revealed that most of these compounds are difficult to identify and that the majority of them are present in the low molecular weight (MW) range. Production of SMP also increased when the hydraulic retention time was reduced from 15 to 3 days, and an increase in DNA concentration in the bulk solution suggested enhanced cell lysis. Although the cause of lysis was not clear, it is believed that most of the SMP produced under such conditions were biomass-associated products following cell death. While the majority of these compounds lay in the low MW range, as much as 35% were found to have MWs greater than 1 kDa. During the period when the anaerobic chemostat was fed no alkalinity and the pH remained lower than 6.5 for more than a week, a slightly higher production of SMP and a shift in the MW distribution towards the production of higher MW SMP was observed.  相似文献   
222.
Background, aim, and scope  Dissolved humic substances (HS) usually comprise 50–80% of the dissolved organic carbon (DOC) in aquatic ecosystems. From a trophic and biogeochemical perspective, HS has been considered to be highly refractory and is supposed to accumulate in the water. The upsurge of the microbial loop paradigm and the studies on HS photo-degradation into labile DOC gave rise to the belief that microbial processing of DOC should sustain aquatic food webs in humic waters. However, this has not been extensively supported by the literature, since most HS and their photo-products are often oxidized by microbes through respiration in most nutrient-poor humic waters. Here, we review basic concepts, classical studies, and recent data on bacterial and photo-degradation of DOC, comparing the rates of these processes in highly humic ecosystems and other aquatic ecosystems. Materials and methods  We based our review on classical and recent findings from the fields of biogeochemistry and microbial ecology, highlighting some odd results from highly humic Brazilian tropical lagoons, which can reach up to 160 mg C L−1. Results and discussion  Highly humic tropical lagoons showed proportionally lower bacterial production rates and higher bacterial respiration rates (i.e., lower bacterial growth efficiency) than other lakes. Zooplankton showed similar δ13C to microalgae but not to humic DOC in these highly humic lagoons. Thus, the data reviewed here do not support the microbial loop as an efficient matter transfer pathway in highly humic ecosystems, where it is supposed to play its major role. In addition, we found that some tropical humic ecosystems presented the highest potential DOC photo-chemical mineralization (PM) rates reported in the literature, exceeding up to threefold the rates reported for temperate humic ecosystems. We propose that these atypically high PM rates are the result of a joint effect of the seasonal dynamics of allochthonous humic DOC input to these ecosystems and the high sunlight incidence throughout the year. The sunlight action on DOC is positive to microbial consumption in these highly humic lagoons, but little support is given to the enhancement of bacterial growth efficiency, since the labile photo-chemical products are mostly respired by microbes in the nutrient-poor humic waters. Conclusions  HS may be an important source of energy for aquatic bacteria in humic waters, but it is probably not as important as a substrate to bacterial growth and to aquatic food webs, since HS consumption is mostly channeled through microbial respiration. This especially seems to be the case of humic-rich, nutrient-poor ecosystems, where the microbial loop was supposed to play its major role. Highly humic ecosystems also present the highest PM rates reported in the literature. Finally, light and bacteria can cooperate in order to enhance total carbon degradation in highly humic aquatic ecosystems but with limited effects on aquatic food webs. Recommendations and perspectives  More detailed studies using C- and N-stable isotope techniques and modeling approaches are needed to better understand the actual importance of HS to carbon cycling in highly humic waters.  相似文献   
223.
Impact of initial and boundary conditions on preferential flow   总被引:3,自引:1,他引:3  
Preferential flow in soil is approached by a water-content wave, WCW, that proceeds downward from the ground surface. WCWs were obtained from sprinkler experiments with infiltration rates varying from 5 to 40 mm h− 1. TDR-probes and tensiometers measured volumetric water contents θ(z,t) at seven depths, and capillary heads, h(z,t) at six depths in a column of an undisturbed soil. The wave is characterized by the velocity of the wetting front, cW, the amplitude, wS, and the final water content, θ. We tested with uni-variate and bi-variate linear regressions the impacts of initial volumetric water contents, θini, and input rates, qS, on cW, wS and θ.The test showed that θini influenced θ and wS and qS effected cW. The expected proportionality of wS ≈ qs1/3 was weak and cW ≈ qs2/3 was strong.  相似文献   
224.
225.
226.
227.
228.
229.
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号