首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20447篇
  免费   235篇
  国内免费   187篇
安全科学   634篇
废物处理   846篇
环保管理   3173篇
综合类   2662篇
基础理论   5368篇
环境理论   6篇
污染及防治   5806篇
评价与监测   1309篇
社会与环境   923篇
灾害及防治   142篇
  2022年   145篇
  2021年   183篇
  2020年   126篇
  2019年   169篇
  2018年   292篇
  2017年   289篇
  2016年   480篇
  2015年   388篇
  2014年   565篇
  2013年   1808篇
  2012年   678篇
  2011年   893篇
  2010年   710篇
  2009年   825篇
  2008年   946篇
  2007年   1009篇
  2006年   870篇
  2005年   702篇
  2004年   752篇
  2003年   694篇
  2002年   688篇
  2001年   800篇
  2000年   595篇
  1999年   350篇
  1998年   263篇
  1997年   253篇
  1996年   306篇
  1995年   313篇
  1994年   289篇
  1993年   264篇
  1992年   225篇
  1991年   211篇
  1990年   235篇
  1989年   208篇
  1988年   205篇
  1987年   192篇
  1986年   182篇
  1985年   167篇
  1984年   206篇
  1983年   200篇
  1982年   193篇
  1981年   188篇
  1980年   149篇
  1979年   176篇
  1978年   118篇
  1977年   108篇
  1976年   96篇
  1975年   98篇
  1973年   97篇
  1972年   105篇
排序方式: 共有10000条查询结果,搜索用时 781 毫秒
711.
Regional Environmental Change - The potential impact of climate change on port operations and infrastructures has received much less attention than the corresponding impact for beach systems....  相似文献   
712.
Value stream mapping (VSM) is a well-accepted tool within lean manufacturing concept which is often used for analysing and designing the flow of materials and information required to manufacture a product. However, the analysis is static and single product oriented, which fails to cope with either the variation of production plan or a multi-product environment. In addition, the environmental impact of a manufacturing system is highly associated with the dynamic consumption of energy and resources. Despite the recent integration of VSM with simulation or environmental studies (in the domain of energy efficiency), still neglected is the dynamic assessment of all the resources involved in a multi-product production environment. This paper presents a methodology for modelling multi-product manufacturing systems with dynamic material, energy and information flows with the aim to generate economic and environmental value stream maps (E2VSM). The proposed methodology is validated with an industrial case.  相似文献   
713.
The concept of climate compatible development (CCD) is increasingly employed by donors and policy makers seeking ‘triple-wins’ for development, adaptation and mitigation. While CCD rhetoric is becoming more widespread, analyses drawing on empirical cases that present triple-wins are sorely lacking. We address this knowledge gap. Drawing on examples in rural sub-Saharan Africa, we provide the first glimpse into how projects that demonstrate triple-win potential are framed and presented within the scientific literature. We identify that development projects are still commonly evaluated in terms of adaptation or mitigation benefits. Few are framed according to their benefits across all three dimensions. Consequently, where triple-wins are occurring, they are likely to be under-reported. This has important implications, which underestimates the co-benefits that projects can deliver. A more robust academic evidence base for the delivery of triple-wins is necessary to encourage continued donor investment in activities offering the potential to deliver CCD.  相似文献   
714.
715.
Two industrial sites were investigated based on years of available hydrogeologic information and monitoring data for soil and groundwater. Collected data were forensically evaluated using age-dating and fingerprinting methods. The previous business uses of the project sites were as a gas station, laundry/dry-cleaning service, and car wash with petroleum underground storage tanks (USTs). As a result, these sites were exposed to a number of toxic contaminants at relatively high concentrations. Source control was necessary for successful remediation and the ultimate removal of the remaining compounds from these industrial sites. Although contaminated soil around the source was excavated during the remedial action and the high concentrations of contaminants were reduced, typical groundwater contaminants such as petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, ethylbenzene, xylenes (BTEX), and oxygenates including methyl tert-butyl ether (MTBE), diisopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), and tert-butyl alcohol (TBA) were persistently found at the studied sites around the source points. The plume and concentration of contaminants had changed their shapes and strength for all monitoring periods. Thus, additional source control seems to be a requirement for the complete removal of source contamination, which must be ascertained with groundwater and soil monitoring on a regular time base. For the study sites, monitored natural attenuation was relatively feasible for the long-term plan; however, it did not offer a perfect remediation solution for an ultimate goal because of residual toxic compounds that might have affected the surrounding residential areas at higher concentrations than their health limits. Therefore, as a remediation strategy, the combination of clean-up technology and natural attenuation with monitoring activities are more highly recommended than either clean-up or natural attenuation used separately.  相似文献   
716.
The ability of near‐surface disposal facility cover designs to meet percolation performance criteria can be influenced by naturally occurring climatic mechanisms as well as anthropogenic forcing. This study was conducted to determine the effect of climate‐induced events on percolation based, probabilistic distributions derived from historical climate data. Water balance predictions were evaluated using the HELP model, employing several variations of degradation in a traditional RCRA disposal facility cover design over a 100‐year simulation period. Results demonstrated that changes in precipitation and temperature can influence performance. The analysis also revealed that when both precipitation and temperature are increased, warmer temperatures tend to offset some of the impact from greater precipitation. ©2015 Wiley Periodicals, Inc.  相似文献   
717.
Journal of Material Cycles and Waste Management - Leather production is a technology that boosts the economy because of its versatility and durability. However, the wastes generated throughout the...  相似文献   
718.
Journal of Material Cycles and Waste Management - The use of lignocellulosic fibers as fillers in polymer matrices has aroused the interest of the scientific community and industrial sectors. In...  相似文献   
719.
Sea ice continues to decline across many regions of the Arctic, with remaining ice becoming increasingly younger and more dynamic. These changes alter the habitats of microbial life that live within the sea ice, which support healthy functioning of the marine ecosystem and provision of resources for human-consumption, in addition to influencing biogeochemical cycles (e.g. air–sea CO2 exchange). With the susceptibility of sea ice ecosystems to climate change, there is a pressing need to fill knowledge gaps surrounding sea ice habitats and their microbial communities. Of fundamental importance to this goal is the development of new methodologies that permit effective study of them. Based on outcomes from the DiatomARCTIC project, this paper integrates existing knowledge with case studies to provide insight on how to best document sea ice microbial communities, which contributes to the sustainable use and protection of Arctic marine and coastal ecosystems in a time of environmental change.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01658-z.  相似文献   
720.
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号