首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16893篇
  免费   171篇
  国内免费   117篇
安全科学   396篇
废物处理   673篇
环保管理   2155篇
综合类   3716篇
基础理论   3913篇
环境理论   9篇
污染及防治   4131篇
评价与监测   1086篇
社会与环境   1051篇
灾害及防治   51篇
  2022年   125篇
  2021年   149篇
  2019年   113篇
  2018年   222篇
  2017年   219篇
  2016年   345篇
  2015年   257篇
  2014年   387篇
  2013年   1145篇
  2012年   444篇
  2011年   674篇
  2010年   514篇
  2009年   588篇
  2008年   689篇
  2007年   737篇
  2006年   652篇
  2005年   543篇
  2004年   567篇
  2003年   559篇
  2002年   517篇
  2001年   638篇
  2000年   396篇
  1999年   309篇
  1998年   199篇
  1997年   216篇
  1996年   238篇
  1995年   251篇
  1994年   244篇
  1993年   230篇
  1992年   205篇
  1991年   212篇
  1990年   201篇
  1989年   175篇
  1988年   175篇
  1987年   160篇
  1986年   155篇
  1985年   152篇
  1984年   177篇
  1983年   170篇
  1982年   177篇
  1981年   147篇
  1980年   133篇
  1979年   126篇
  1978年   139篇
  1977年   118篇
  1976年   104篇
  1975年   108篇
  1974年   119篇
  1971年   98篇
  1967年   101篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
421.
422.
423.
The role of minor components of the leaves of Zostera marina L. in altering the activity of micro-organisms directly (and indirectly by affecting amphipod grazers) was investigated in laboratory experiments, using plants collected at Roberts Bank (49°2N; 123°8W) on the west coast of Canada. Water-soluble extracts of eelgrass leaves inhibited the growth of a micro-alga (Platymonas sp.) and many marine bacteria at concentrations equivalent to as little as 10 mg dry leaf l-1. The potency of leaf extracts was higher (1) in young, actively metabolizing tissue than in older leaves, and (2) in leaves collected during rapid growth in summer 1980 than during the following winter. Water-soluble inhibitors (especially phenolic acids) may explain the low biomass of epiphytes on actively growing leaves. Three phenolic acids inhibited the test micro-organisms at concentrations as low as 0.3 mg l-1; caffeic acid was more potent than either protocatechuic or gentisic acid. Extracts of young leaves also inhibited grazing by amphipods [Eogammarus confervicolus (Stimpson)] on dead leaves. The time required for leaching of soluble inhibitors may account for the delay between the loss of leaves from the plants and the onset of grazing. Thus, interactions among the biotic components of the detritus ecosystem may be significantly modified by minor compounds in the leaves of Z. marina  相似文献   
424.
425.
426.
427.
428.
The variability of 14 enzyme-coding genes has been analysed in samples from 19 populations of the oyster Ostrea edulis L., collected along the Atlantic and Mediterranean coasts of Europe. We found an abundance of clines, which appeared at 8 loci, including the most polymorphic (AP-2 *, ARK *, EST-4 *, MDH-2 *, ME-1 *, 6PGH *, PGI * and PGM *). Another 6 loci (ALDH *, EST-3 *, EST-5 *, IDH-2 *, MDH-1 *, ME-2 *) exhibited V-shaped patterns of gene-frequency variation, with clines at one or both sides of the Straits of Gibraltar. The observation of coincident clines at many loci can be explained by a model of secondary intergradation. The geographical location of the midpoints of the clines and V-shaped patterns suggests the existence of two ancient Atlantic and Mediterranean oyster stocks which became differentiated in allopatry and subsequently merged. Clines observed along Atlantic and/or Mediterranean coasts at the loci with V-shaped patterns must have arisen independently. The large heterogeneity observed in the levels of gene differentiation (G ST ) across loci (G ST ranged from 0.008 to 0.290) and important differences in estimates of gene flow obtained by different methods suggest that the populations of O. edulis are not in genetic equilibrium. Lack of population equilibrium can be due to natural selection and/or restrictions to gene flow. The average among-population variability was higher than in other oyster species that do not show incubatory habits, and represented 8.8% of the total heterozygosity. Levels of intrapopulation variability were lowest in populations from the North Atlantic, suggesting low population sizes in that area.  相似文献   
429.
/ This paper describes the fundamental design features, and construction methods and sequence, of a rehabilitation project on a small suburban creek in Moscow, Idaho, USA. A meandering channel pattern was reestablished for approximately 280 m of straightened, dredged channel, a new floodplain was excavated, and the new riparian zone was replanted. The new stream channel was sized to accommodate an estimated natural bankfull discharge ( approximately 5.6 cms), and floodplain design attempted to match the conveyance of the old enlarged channel (14-20 cms). The project was coordinated by a local nonprofit environmental organization, and the design and construction were tailored to donated materials and a largely volunteer labor force. A high-magnitude flood event (ca. 50-year recurrence interval) six months after construction had no significant impact on the newly constructed channel and revetments, but underscored the need for important detailing of the structures. The use of volunteer labor, while entailing certain benefits, complicates project planning and construction. The most general lesson learned from this project is that sponsoring agencies and clients need to be informed of the many steps and sequencing of properly constructed, complex stream rehabilitation projects as well as the high time and cost requirements for these tasks. KEY WORDS: Stream corridor restoration; Channel design; Streambank revetments  相似文献   
430.
Annually, great amounts of cellulose wastes, which could be measured in many billions of tons, are produced worldwide as residues from agricultural activities and industrial food processing. Consequently, the use of microorganisms in order to remove, reduce or ameliorate these potential polluting materials is a real environmental challenge, which could be solved by a focused research concerning efficient methods applied in biological degradation processes. In this respect, the scope of this chapter is to present the state of the art concerning the biodegradation of redundant cellulose wastes from agriculture and food processing by continuous enzymatic activities of immobilized bacterial and fungal cells as improved biotechnological tools and, also, to report on our recent research concerning cellulose wastes biocomposting to produce natural organic fertilizers and, respectively, cellulose bioconversion into useful products, such as: ‘single-cell protein’ (SCP) or ‘protein-rich feed’ (PRF). In addition, there are shown some new methods to immobilize microorganisms on polymeric hydrogels such as: poly-acrylamide (PAA), collagen-poly-acrylamide (CPAA), elastin-poly-acrylamide (EPAA), gelatin-poly-acrylamide (GPAA), and poly-hydroxy-ethyl-methacrylate (PHEMA), which were achieved by gamma polymerization techniques. Unlike many other biodegradation processes, these methods were performed to preserve the whole viability of fungal and bacterial cells during long term bioprocesses and their efficiency of metabolic activities. The immobilization methods of viable microorganisms were achieved by cellular adherence mechanisms inside hydrogels used as immobilization matrices which control cellular growth by: reticulation size, porosity degree, hydration rate in different colloidal solutions, organic and inorganic compounds, etc. The preparative procedures applied to immobilize bacterial and fungal viable cells in or on radiopolymerized hydrogels and, also, their use in cellulose wastes biodegradation are discussed in detail. In all such performed experiments were used pure cell cultures of the following cellulolytic microorganisms: Bacillus subtilis and Bacillus licheniformis from bacteria, and Pleurotus ostreatus, Pleurotus florida, and Trichoderma viride from fungi. These species of microorganisms were isolated from natural habitats, then purified by microbiological methods, and finally, tested for their cellulolytic potential. The cellulose biodegradation, induced especially by fungal cultures, used as immobilized cells in continuous systems, was investigated by enzymatic assays and the bioconversion into protein-rich biomass was determined by mycelial protein content, during such long time processes. The specific changes in cellular development of immobilized bacterial and fungal cells in PAA hydrogels emphasize the importance of physical structure and chemical properties of such polymeric matrices used for efficient preservation of their metabolic activity, especially to perform in situ environmental applications involving cellulose biodegradation by using immobilized microorganisms as long-term viable biocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号