首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1543篇
  免费   51篇
  国内免费   19篇
安全科学   69篇
废物处理   75篇
环保管理   423篇
综合类   118篇
基础理论   376篇
环境理论   1篇
污染及防治   404篇
评价与监测   96篇
社会与环境   41篇
灾害及防治   10篇
  2023年   8篇
  2022年   9篇
  2021年   13篇
  2020年   17篇
  2019年   12篇
  2018年   25篇
  2017年   38篇
  2016年   41篇
  2015年   35篇
  2014年   39篇
  2013年   165篇
  2012年   55篇
  2011年   74篇
  2010年   66篇
  2009年   71篇
  2008年   77篇
  2007年   81篇
  2006年   86篇
  2005年   54篇
  2004年   53篇
  2003年   60篇
  2002年   55篇
  2001年   31篇
  2000年   39篇
  1999年   31篇
  1998年   33篇
  1997年   22篇
  1996年   38篇
  1995年   30篇
  1994年   32篇
  1993年   18篇
  1992年   16篇
  1991年   10篇
  1990年   12篇
  1989年   19篇
  1988年   12篇
  1987年   16篇
  1986年   9篇
  1985年   10篇
  1984年   14篇
  1983年   10篇
  1982年   17篇
  1981年   10篇
  1980年   10篇
  1979年   13篇
  1978年   7篇
  1977年   6篇
  1975年   4篇
  1973年   2篇
  1972年   2篇
排序方式: 共有1613条查询结果,搜索用时 31 毫秒
81.
Three geomorphic considerations that underpin the design and implementation of realistic and strategic river conservation and rehabilitation programs that work with the nature are outlined. First, the importance of appreciating the inherent diversity of river forms and processes is discussed. Second, river dynamics are appraised, framing the contemporary behavioral regime of a reach in relation to system evolution to explain changes to river character and behavior over time. Third, the trajectory of a reach is framed in relation to downstream patterns of river types, analyzing landscape connectivity at the catchment scale to interpret geomorphic river recovery potential. The application of these principles is demonstrated using extensive catchment-scale analyses of geomorphic river responses to human disturbance in the Bega and Upper Hunter catchments in southeastern Australia. Differing implications for reach- and catchment-scale rehabilitation planning prompt the imperative that management practices work with nature rather than strive to ‘fight the site.’  相似文献   
82.
This paper describes a GIS-based estimation method that can be used to forecast future amounts of impervious surface as a mitigation measure for urban heat island effect in a metropolitan region. The method is unique because it employs a regression model that links the existing amount of impervious surface to population and employment at the census tract level. This approach provides a means to forecast future amounts of impervious surface based on projected population and employment. The method also includes a detailed analysis of high-resolution aerial photography to divide impervious surfaces into different categories. Subdividing impervious surfaces is necessary to evaluate potential urban heat island mitigation policies for different types of impervious surface. The analysis here shows that the impervious surface in the metropolitan Atlanta region will increase to 2638 km2 2. “The Albedo is defined as the hemispherical reflectivity averaged over the solar spectrum. A perfect reflector has a = 1, and a perfect absorber has a = 0” (Pomerantz et al. 1999 Pomerantz, M. 1999. Reflective surfaces for cooler buildings and cities. Philosophical magazine B, 79: 14571476. [Taylor & Francis Online], [Web of Science ®] [Google Scholar], p. 1458). View all notes in 2030, an increase of 45% from 2000. The most common type of impervious surface is dark-coloured pavement. Within this study area, the analyses showed that two-thirds of impervious surfaces are dark. Replacing dark pavement with light pavement materials, therefore, represents an important opportunity to mitigate the urban heat island effect in the Atlanta region.  相似文献   
83.
The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 °C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6 ± 1.6 μg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 μg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites occurred. The availability of dissolved O2 did not affect MTBE biodegradation significantly, with similar MTBE biodegradation behaviour and rates down to ca. 0.7 mg/L dissolved O2 concentration. The results indicate that aerobic MTBE biodegradation could be significant in the plume fringe, during mixing of the contaminant plume and uncontaminated groundwater and that, relative to the plume migration, aerobic biodegradation is important for MTBE attenuation. Moreover, should the groundwater dissolved O2 concentration fall to zero such that MTBE biodegradation was inhibited, an engineered approach to enhance in situ bioremediation could supply O2 at relatively low levels (e.g. 2–3 mg/L) to effectively stimulate MTBE biodegradation, which has significant practical advantages. The study shows that aerobic MTBE biodegradation can occur at environmentally significant rates in this aquifer, and that long-term microcosm experiments (100s days) may be necessary to correctly interpret contaminant biodegradation potential in aquifers to support site management decisions.  相似文献   
84.
Jonathan M. H. Green  Gemma R. Cranston  William J. Sutherland  Hannah R. Tranter  Sarah J. Bell  Tim G. Benton  Eva Blixt  Colm Bowe  Sarah Broadley  Andrew Brown  Chris Brown  Neil Burns  David Butler  Hannah Collins  Helen Crowley  Justin DeKoszmovszky  Les G. Firbank  Brett Fulford  Toby A. Gardner  Rosemary S. Hails  Sharla Halvorson  Michael Jack  Ben Kerrison  Lenny S. C. Koh  Steven C. Lang  Emily J. McKenzie  Pablo Monsivais  Timothy O’Riordan  Jeremy Osborn  Stephen Oswald  Emma Price Thomas  David Raffaelli  Belinda Reyers  Jagjit S. Srai  Bernardo B. N. Strassburg  David Webster  Ruth Welters  Gail Whiteman  James Wilsdon  Bhaskar Vira 《Sustainability Science》2017,12(2):319-331
Delivering access to sufficient food, energy and water resources to ensure human wellbeing is a major concern for governments worldwide. However, it is crucial to account for the ‘nexus’ of interactions between these natural resources and the consequent implications for human wellbeing. The private sector has a critical role in driving positive change towards more sustainable nexus management and could reap considerable benefits from collaboration with researchers to devise solutions to some of the foremost sustainability challenges of today. Yet opportunities are missed because the private sector is rarely involved in the formulation of deliverable research priorities. We convened senior research scientists and influential business leaders to collaboratively identify the top forty questions that, if answered, would best help companies understand and manage their food-energy-water-environment nexus dependencies and impacts. Codification of the top order nexus themes highlighted research priorities around development of pragmatic yet credible tools that allow businesses to incorporate nexus interactions into their decision-making; demonstration of the business case for more sustainable nexus management; identification of the most effective levers for behaviour change; and understanding incentives or circumstances that allow individuals and businesses to take a leadership stance. Greater investment in the complex but productive relations between the private sector and research community will create deeper and more meaningful collaboration and cooperation.  相似文献   
85.
The scaling problem associated with the modeling of turbidity currents has been recognized but is yet to be explored systematically. This paper presents an analysis of the dimensionless governing equations of turbidity currents to investigate the scale effect. Three types of flow conditions are considered: (i) conservative density current; (ii) purely depositional turbidity current; and (iii) mixed erosional/depositional turbidity current. Two controlling dimensionless numbers, the Froude number and the Reynolds number, appear in the non-dimensional governing equations. When densimetric Froude similarity is satisfied, the analysis shows that the results would be scale-invariant for conservative density current under the rough turbulent condition. In the case of purely depositional flows, truly scale-invariant results cannot be obtained, as the Reynolds-mediated scale effects appear in the bottom boundary conditions of the flow velocity and sediment fall velocity. However, the scale effect would be relatively modest. The Reynolds effect becomes more significant for erosional or mixed erosional/depositional turbidity currents as Reynolds-mediated scale effects also appear in the sediment entrainment relation. Numerical simulations have been conducted at three different scales by considering densimetric Froude scaling alone as well as combined densimetric Froude and Reynolds similarity. Simulation results confirm that although the scaling of densimetric Froude number alone can produce scale-invariable results for conservative density currents, variations occur in the case of turbidity currents. The results become scale invariant when densimetric Froude and Reynolds similarities are satisfied simultaneously.  相似文献   
86.
As part of the 2010 Van Nuys tunnel study, researchers from the University of Denver measured on-road fuel-specific light-duty vehicle emissions from nearly 13,000 vehicles on Sherman Way (0.4 miles west of the tunnel) in Van Nuys, California, with its multispecies Fuel Efficiency Automobile Test (FEAT) remote sensor a week ahead of the tunnel measurements. The remote sensing mean gram per kilogram carbon monoxide (CO), hydrocarbon (HC), and oxide of nitrogen (NOx) measurements are 8.9% lower, 41% higher, and 24% higher than the tunnel measurements, respectively. The remote sensing CO/NOx and HC/NOx mass ratios are 28% lower and 20% higher than the comparable tunnel ratios. Comparisons with the historical tunnel measurements show large reductions in CO, HC, and NOx over the past 23 yr, but little change in the HC/NOx mass ratio since 1995. The fleet CO and HC emissions are increasingly dominated by a few gross emitters, with more than a third of the total emissions being contributed by less than 1% of the fleet. An example of this is a 1995 vehicle measured three times with an average HC emission of 419 g/kg fuel (two-stroke snowmobiles average 475 g/kg fuel), responsible for 4% of the total HC emissions. The 2008 economic downturn dramatically reduced the number of new vehicles entering the fleet, leading to an age increase (>1 model year) of the Sherman Way fleet that has increased the fleet's ammonia (NH3) emissions. The mean NH3 levels appear little changed from previous measurements collected in the Van Nuys tunnel in 1993. Comparisons between weekday and weekend data show few fleet differences, although the fraction of light-duty diesel vehicles decreased from the weekday (1.7%) to Saturday (1.2%) and Sunday (0.6%).

Implications: On-road remote sensing emission measurements of light-duty vehicles on Sherman Way in Van Nuys, California, show large historical emission reductions for CO and HC emissions despite an older fleet arising from the 2008 economic downturn. Fleet CO and HC emissions are increasingly dominated by a few gross emitters, with a single 1995 vehicle measured being responsible for 4% of the entire fleet's HC emissions. Finding and repairing and/or scrapping as little as 2% of the fleet would reduce on-road tailpipe emissions by as much as 50%. Ammonia emissions have locally increased with the increasing fleet age.  相似文献   
87.
Dramatic increases in the development of oil and natural gas from shale formations will result in large quantities of drill cuttings, flowback water, and produced water. These organic-rich shale gas formations often contain elevated concentrations of naturally occurring radioactive materials (NORM), such as uranium, thorium, and radium. Production of oil and gas from these formations will also lead to the development of technologically enhanced NORM (TENORM) in production equipment. Disposal of these potentially radium-bearing materials in municipal solid waste (MSW) landfills could release radon to the atmosphere. Risk analyses of disposal of radium-bearing TENORM in MSW landfills sponsored by the Department of Energy did not consider the effect of landfill gas (LFG) generation or LFG control systems on radon emissions. Simulation of radon emissions from landfills with LFG generation indicates that LFG generation can significantly increase radon emissions relative to emissions without LFG generation, where the radon emissions are largely controlled by vapor-phase diffusion. Although the operation of LFG control systems at landfills with radon source materials can result in point-source atmospheric radon plumes, the LFG control systems tend to reduce overall radon emissions by reducing advective gas flow through the landfill surface, and increasing the radon residence time in the subsurface, thus allowing more time for radon to decay. In some of the disposal scenarios considered, the radon flux from the landfill and off-site atmospheric activities exceed levels that would be allowed for radon emissions from uranium mill tailings.

Implications: Increased development of hydrocarbons from organic-rich shale formations has raised public concern that wastes from these activities containing naturally occurring radioactive materials, particularly radium, may be disposed in municipal solid waste landfills and endanger public health by releasing radon to the atmosphere. This paper analyses the processes by which radon may be emitted from a landfill to the atmosphere. The analyses indicate that landfill gas generation can significantly increase radon emissions, but that the actual level of radon emissions depend on the place of the waste, construction of the landfill cover, and nature of the landfill gas control system.  相似文献   
88.
Abstract: Water supply uncertainty continues to threaten the reliability of regional water resources in the western United States. Climate variability and water dispute potentials induce water managers to develop proactive adaptive management strategies to mitigate future hydroclimate impacts. The Eastern Snake Plain Aquifer in the state of Idaho is also facing these challenges in the sense that population growth and economic development strongly depend on reliable water resources from underground storage. Drought and subsequent water conflict often drive scientific research and political agendas because water resources availability and aquifer management for a sustainable rural economy are of great interest. In this study, a system dynamics approach is applied to address dynamically complex problems with management of the aquifer and associated surface‐water and groundwater interactions. Recharge and discharge dynamics within the aquifer system are coded in an environmental modeling framework to identify long‐term behavior of aquifer responses to uncertain future hydrological variability. The research shows that the system dynamics approach is a promising modeling tool to develop sustainable water resources planning and management in a collaborative decision‐making framework and also to provide useful insights and alternative opportunities for operational management, policy support, and participatory strategic planning to mitigate future hydroclimate impacts in human dimensions.  相似文献   
89.
The air-sea gas exchange of alpha-hexachlorocyclohexane (α-HCH) in the Canadian Arctic was estimated using a micrometeorological approach and the commonly used Whitman two-film model. Concurrent shipboard measurements of α-HCH in air at two heights (1 and 15 m) and in surface seawater were conducted during the Circumpolar Flaw Lead study in 2008. Sampling was carried out during eight events in the early summer time when open water was encountered. The micrometeorological technique employed the vertical gradient in air concentration and the wind speed to estimate the flux; results were corrected for atmospheric stability using the Monin-Obukhov stability parameter. The Whitman two-film model used the concentrations of α-HCH in surface seawater, in bulk air at 1 and 15 m above the surface, and the Henry's law constant adjusted for temperature and salinity to derive the flux. Both approaches showed that the overall net flux of α-HCH was from water to air. Mean fluxes calculated using the micrometeorological technique ranged from -3.5 to 18 ng m(-2) day(-1) (mean 7.4), compared to 3.5 to 14 ng m(-2) day(-1) (mean 7.5) using the Whitman two-film model. Flux estimates for individual events agreed in direction and within a factor of two in magnitude for six of eight events. For two events, fluxes estimated by micrometeorology were zero or negative, while fluxes estimated with the two-film model were positive, and the reasons for these discrepancies are unclear. Improvements are needed to shorten air sampling times to ensure that stationarity of meteorological conditions is not compromised over the measurement periods. The micrometeorological technique could be particularly useful to estimate fluxes of organic chemicals over water in situations where no water samples are available.  相似文献   
90.
Factors that diminish the effectiveness of phosphorus inputs from a municipal wastewater treatment facility (Metro) in contributing to phosphorus levels and its availability to support algae growth in a culturally eutrophic urban lake (Onondaga Lake, NY) were characterized and quantified. These factors included the bioavailability and settling characteristics of particulate phosphorus from this effluent, the dominant form (70%) of phosphorus in this input, and the plunging of the discharge to stratified layers in the lake. Supporting studies included: (1) chemical and morphometric characterization of the phosphorus-enriched particles of this effluent, compared to particle populations of the tributaries and lake, with an individual particle analysis technique; (2) conduct of algal bioavailability assays of the particulate phosphorus of the effluent; (3) conduct of multiple size class settling velocity measurements on effluent particles; and (4) determinations of the propensity of the discharge to plunge, and documentation of plunging through three-dimensional monitoring of a tracer adjoining the outfall. All of these diminishing effects were found to be operative for the Metro effluent in Onondaga Lake and will be integrated into a forthcoming phosphorus "total maximum daily load" analysis for the lake, through appropriate representation in a supporting mechanistic water quality model. The particulate phosphorus in the effluent was associated entirely with Fe-rich particles formed in the phosphorus treatment process. These particles did not contribute to concentrations in pelagic portions of the lake, due to local deposition associated with their large size. Moreover, this particulate phosphorus was found to be nearly entirely unavailable to support algae growth. While substantial differences are to be expected for various inputs, the effective loading concept and the approaches adopted here to assess the diminishing factors are broadly applicable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号