首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   2篇
  国内免费   1篇
安全科学   2篇
废物处理   4篇
环保管理   9篇
综合类   202篇
基础理论   63篇
污染及防治   86篇
评价与监测   10篇
社会与环境   8篇
  2021年   3篇
  2018年   4篇
  2016年   5篇
  2014年   8篇
  2013年   12篇
  2012年   7篇
  2011年   5篇
  2010年   10篇
  2009年   16篇
  2008年   7篇
  2007年   21篇
  2006年   8篇
  2005年   7篇
  2004年   9篇
  2003年   11篇
  2002年   14篇
  2001年   8篇
  2000年   6篇
  1999年   9篇
  1998年   7篇
  1997年   5篇
  1995年   6篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1983年   3篇
  1981年   4篇
  1978年   3篇
  1967年   4篇
  1966年   4篇
  1965年   5篇
  1964年   8篇
  1963年   11篇
  1962年   4篇
  1961年   7篇
  1960年   5篇
  1959年   6篇
  1958年   10篇
  1957年   7篇
  1956年   7篇
  1955年   12篇
  1954年   6篇
  1952年   4篇
  1951年   3篇
  1950年   6篇
  1947年   5篇
  1943年   6篇
  1939年   4篇
  1928年   2篇
  1924年   3篇
排序方式: 共有384条查询结果,搜索用时 46 毫秒
301.
In 2006, a controlled infection study was performed in the ‘Kranzberger Forst’ to address the following questions: (1) Will massive artificial inoculation with Apiognomonia errabunda override the previously observed inhibitory effect of chronic ozone? (2) Can biochemical or molecular markers be detected to account for the action of ozone? To this end six adult beech trees were chosen, three ozone fumigated (2× ozone) and three control trees (ambient = 1× ozone). Spore-sprayed branches of sun and shade crown positions of each of the trees, and uninoculated control branches, were enclosed in 100-L plastic bags for one night to facilitate infection initiation. Samples were taken within a five-week period after inoculation. A. errabunda infestation levels quantified by real-time PCR increased in leaves that were not fumigated with additional ozone. Cell wall components and ACC (ethylene precursor 1-amino cyclopropane-1-carboxylic acid) increased upon ozone fumigation and may in part lead to the repression of fungal infection.  相似文献   
302.
Forests in lowland Bolivia suffer from severe deforestation caused by different types of agents and land use activities. We identify three major proximate causes of deforestation. The largest share of deforestation is attributable to the expansion of mechanized agriculture, followed by cattle ranching and small-scale agriculture. We utilize a spatially explicit multinomial logit model to analyze the determinants of each of these proximate causes of deforestation between 1992 and 2004. We substantiate the quantitative insights with a qualitative analysis of historical processes that have shaped land use patterns in the Bolivian lowlands to date. Our results suggest that the expansion of mechanized agriculture occurs mainly in response to good access to export markets, fertile soil, and intermediate rainfall conditions. Increases in small-scale agriculture are mainly associated with a humid climate, fertile soil, and proximity to local markets. Forest conversion into pastures for cattle ranching occurs mostly irrespective of environmental determinants and can mainly be explained by access to local markets. Land use restrictions, such as protected areas, seem to prevent the expansion of mechanized agriculture but have little impact on the expansion of small-scale agriculture and cattle ranching. The analysis of future deforestation trends reveals possible hotspots of future expansion for each proximate cause and specifically highlights the possible opening of new frontiers for deforestation due to mechanized agriculture. Whereas the quantitative analysis effectively elucidates the spatial patterns of recent agricultural expansion, the interpretation of long-term historic drivers reveals that the timing and quantity of forest conversion are often triggered by political interventions and historical legacies.  相似文献   
303.
Summary. Coupled gas chromatographic-electroantennographic detection (GC-EAD) analysis of the Porapak Q-captured volatiles from the bark of trembling aspen, Populus tremuloides Michx., revealed four compounds that consistently elicited antennal responses by mountain pine beetles (MPBs), Dendroctonus ponderosae Hopkins. One of these, 1-hexanol, disrupted the capture of MPBs in multiple-funnel traps baited with the aggregation pheromones trans-verbenol and exo-brevicomin and the host kairomone myrcene, a blend of semiochemicals that mediates the secondary attraction response in which beetles mass attack and kill living pines. The other three EAD-active aspen bark volatiles, benzyl alcohol, benzaldehyde and nonanal, were inactive alone, but in binary and ternary combinations contributed to a disruptive effect in an additive and redundant manner when all four aspen bark volatiles were tested in all possible binary and ternary blends. The best ternary blend and the quarternary blend achieved ≥ 80% disruption. The quarternary blend enhanced the disruptive effect of the antiaggregation pheromone verbenone in traps, raising the disruptive effect to 98%, and also enhanced the inhibition of attack on attractant-baited lodgepole pines. This is the first demonstration of specific compounds from the bark of angiosperm trees that disrupt the secondary attraction response of sympatric coniferophagous bark beetles. The results support the hypothesis that such bark beetles are adapted to recognize and avoid non-host angiosperm trees by responding to a broad spectrum of volatiles that can act in various blends with equal effect. Received 27 October 1997; accepted 20 February 1998.  相似文献   
304.
A fixed-volume release of 1,2-DCE, tracked in space and time with a light transmission/image analysis system, provided a data set for the infiltration, redistribution, and immobilisation of a dense non-aqueous phase liquid (DNAPL) in a heterogeneous porous medium. The two-dimensional bench scale flow cell was packed with a spatially correlated, random heterogeneous distribution of six sand types. In order to provide the necessary modelling parameters, detailed constitutive relationships were measured at the local scale for the six sands. These experiments revealed that nonwetting phase (NWP) relative permeability-saturation (k(rN)-S(W)) relationships are strongly correlated to sand type. Trends in the best-fit k(rN)-S(W) parameters reflected a positive correlation between mean grain diameter and the maximum NWP relative permeability, k(rN)(max). Multiphase flow simulations of the bench scale experiment best reproduced the experimental observations, producing excellent matches in both time and space, when the measured, correlated local scale k(rN)-S(W) relationships were employed.  相似文献   
305.
Background, Aim and Scope Modelling of the fate of environmental chemicals can be done by relatively simple multi-media box models or using complex atmospheric transport models. It was the aim of this work to compare the results obtained for both types of models using a small set of non-ionic and non-polar or moderately polar organic chemicals, known to be distributed over long distances. Materials and Methods Predictions of multimedia exposure models of different types, namely three multimedia mass-balance box models (MBMs), two in the steady state and one in the non-steady state mode, and one non-steady state multicompartment chemistry-atmospheric transport model (MCTM), are compared for the first time. The models used are SimpleBox, Chemrange, the MPI-MBM and the MPI-MCTM. The target parameters addressed are compartmental distributions (i.e. mass fractions in the compartments), overall environmental residence time (i.e. overall persistence and eventually including other final sinks, such as loss to the deep sea) and a measure for the long-range transport potential. These are derived for atrazine, benz-[a]-pyrene, DDT, α and γ-hexachlorocyclohexane, methyl parathion and various modes of substance entry into the model world. Results and Discussion Compartmental distributions in steady state were compared. Steady state needed 2–10 years to be established in the MCTM. The highest fraction of the substances in air is predicted by the MCTM. Accordingly, the other models predict longer substance persistence in most cases. The results suggest that temperature affects the compartmental distribution more in the box models, while it is only one among many climate factors acting in the transport model. The representation of final sinks in the models, e.g. burial in the sediment, is key for model-based compartmental distribution and persistence predictions. There is a tendency of MBMs to overestimate substance sinks in air and to underestimate atmospheric transport velocity as a consequence of the neglection of the temporal and spatial variabilities of these parameters. Therefore, the long-range transport potential in air derived from MCTM simulations exceeds the one from Chemrange in most cases and least for substances which undergo slow degradation in air. Conclusions and Perspectives MBMs should be improved such as to ascertain that the significance of the atmosphere for the multicompartmental cycling is not systematically underestimated. Both types of models should be improved such as to cover degradation in air in the particle-bound state and transport via ocean currents. A detailed understanding of the deviations observed in this work and elsewhere should be gained and multimedia fate box models could then be ‘tuned in’ to match better the results of comprehensive multicompartmental transport models. ESS-Submission Editor: Prof. Dr. Michael Matthies (matthies@uos.de)  相似文献   
306.
Cocoon-spinning larvae of the codling moth, Cydia pomonella L. (Lepidoptera: Olethreutidae) employ a pheromone that attracts or arrests conspecifics seeking pupation sites. Such intraspecific communication signals are important cues for illicit receivers such as parasitoids to exploit. We tested the hypothesis that the prepupal C. pomonella parasitoid Mastrus ridibundus Gravenhorst (Hymenoptera: Ichneumonidae) exploits the larval aggregation pheromone to locate host prepupae. In laboratory olfactometer experiments, female M. ridibundus were attracted to 3-day-old cocoons containing C. pomonella larvae or prepupae. Older cocoons containing C. pomonella pupae, or larvae and prepupae excised from cocoons, were not attractive. In gas chromatographic-electroantennographic detection (GC-EAD) analyses of bioactive Porapak Q extract of cocoon-derived airborne semiochemicals, ten compounds elicited responses from female M. ridibundus antennae. Comparative GC-mass spectrometry of authentic standards and cocoon-volatiles determined that these compounds were 3-carene, myrcene, heptanal, octanal, nonanal, decanal, (E)-2-octenal, (E)-2-nonenal, sulcatone, and geranylacetone. A synthetic 11-component blend consisting of these ten EAD-active compounds plus EAD-inactive (+)-limonene (the most abundant cocoon-derived volatile) was as effective as Porapak Q cocoon extract in attracting both female M. ridibundus and C. pomonella larvae seeking pupation sites. Only three components could be deleted from the 11-component blend without diminishing its attractiveness to M. ridibundus, which underlines the complexity of information received and processed during foraging for hosts. Mastrus ridibundus obviously eavesdrop on the pheromonal communication signals of C. pomonella larvae that reliably indicate host presence.
Gerhard GriesEmail:
  相似文献   
307.
Interactions of organic materials with solid surfaces can be successfully studied with inorganic layer crystals that take up organic compounds between the layers. The kind of information obtainable is illustrated by three selected examples. Investigations with long-chain compounds clarify the possible chain conformations in planar alkyl chain aggregates (mono- and bimolecular films). Studies with polyelectrolytes demonstrate the influence of the charge patterns on polymer adsorption and interactions with nucleotides present very specific adsorption phenomena.  相似文献   
308.
309.
310.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号