首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11919篇
  免费   109篇
  国内免费   89篇
安全科学   340篇
废物处理   443篇
环保管理   1653篇
综合类   2123篇
基础理论   3132篇
环境理论   7篇
污染及防治   2973篇
评价与监测   735篇
社会与环境   626篇
灾害及防治   85篇
  2022年   103篇
  2021年   99篇
  2020年   81篇
  2019年   93篇
  2018年   165篇
  2017年   143篇
  2016年   225篇
  2015年   194篇
  2014年   268篇
  2013年   884篇
  2012年   356篇
  2011年   498篇
  2010年   409篇
  2009年   480篇
  2008年   526篇
  2007年   518篇
  2006年   456篇
  2005年   422篇
  2004年   353篇
  2003年   365篇
  2002年   351篇
  2001年   472篇
  2000年   347篇
  1999年   210篇
  1998年   131篇
  1997年   157篇
  1996年   163篇
  1995年   191篇
  1994年   192篇
  1993年   160篇
  1992年   133篇
  1991年   169篇
  1990年   163篇
  1989年   157篇
  1988年   115篇
  1987年   114篇
  1986年   118篇
  1985年   91篇
  1984年   108篇
  1983年   111篇
  1982年   120篇
  1981年   109篇
  1980年   97篇
  1979年   112篇
  1978年   73篇
  1977年   77篇
  1975年   76篇
  1973年   72篇
  1972年   65篇
  1967年   66篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
281.
Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this important area of global change science.  相似文献   
282.
Field trials were established to compare alum-treated poultry litter (ATPL), normal poultry litter (NPL), and triple superphosphate (TSP) as fertilizer sources for corn (Zea mays L.) when applied at rates based on current litter management strategies in Virginia. Trials were established in the Costal Plain and Piedmont physiographic regions near Painter and Orange, VA, respectively. Nitrogen-based applications of ATPL or NPL applied at rates estimated to supply 173 kg of plant-available nitrogen (PAN) ha(-1) resulted in significantly lower grain yields than treatments receiving commercial fertilizer at the same rate in 2000 and 2001 at Painter. These decreases in grain yield at the N-based application rates were attributed to inadequate N availability, resulting from overestimates of PAN as demonstrated by tissue N concentrations. However, at Orange no treatment effects on grain yield were observed. Applications of ATPL did not affect Al concentrations in corn ear-leaves at either location. Exchangeable soil Al concentrations were most elevated in treatments receiving only NH4NO3 as an N source. At N-based application rates, the ATPL resulted in lower Mehlich 1-extractable P (M1-P) and water-extractable soil phosphorus (H2O-P) concentrations compared to the application of NPL. A portion of this reduction could be attributed to lower rates of P applied in the N-based ATPL treatments. Runoff collected from treatments which received ATPL 2 d before conducting rainfall simulations contained 61 to 71% less dissolved reactive phosphorus (DRP) than treatments receiving NPL. These results show that ATPL may be used as a nutrient source for corn production without significant management alterations. Alum-treated poultry litter can also reduce the environmental impact of litter applications, primarily through minimizing the P status of soils receiving long-term applications of litter and reductions in runoff DRP losses shortly after application.  相似文献   
283.
Irradiation with ultrasound (US) and use of an enzyme (E) as pretreatment techniques were carried out to treat a complex effluent (distillery wastewater). These two techniques have been used alone as well as in combination and the efficacy of these techniques was tested by subjecting the effluent to subsequent aerobic biological oxidation (AO). When used alone, US exposure for 30 min and 2 h yielded the best COD reduction during the aerobic oxidation step (US+AO). For the enzyme when used alone, a pH value of 4.8 (corresponding to the optimum pH of the enzyme), a dose of 50 U and a pretreatment time of 24 h yielded better COD removal efficiency as compared to untreated effluent (aerobic oxidation alone). When used in combination, ultrasound followed by enzymatic pretreatment (US+E+AO) yielded the best COD removal efficiencies during aerobic oxidation as compared to the other combinations tested for the treatment of the distillery wastewater. A 4-fold increase in the initial oxidation rate was observed over the untreated batch for the integrated technique (US+E+AO). On the basis of the variation in the values of the biokinetic parameters it can be concluded that the type of pretreatment scheme affects the subsequent rate of the aerobic oxidation significantly.  相似文献   
284.
Land use in the Chittagong Hill Tracts (CHT) of Bangladesh had undergone changes over the past several centuries. The landscape, which was mostly covered with forest with interspersed shifting cultivation plots until the beginning of the colonial period, has gradually changed into a landscape with a blend of land uses. Overall, the forest area has gradually declined, while the area under shifting cultivation and sedentary agriculture has expanded. The process of the change was multi-directional. National forestry, land use, land taxation, population migration policies, and development activities, such as construction of a hydroelectric dam and roads, played an important role in this process. Shifting cultivation had inflicted little damage on the forest until the beginning of the colonial period. The pace of deforestation accelerated with the nationalization of forests which abolished tribal people's customary use and management rights to the forest, and allowed large-scale commercial logging both legally and illegally. The pace was further intensified by the policy encouraging population migration to CHT and construction of a reservoir on the Karnafuli River. Efforts were made to replace shifting cultivation with more productive types of sedentary agriculture. However, much change could not take place in the absence of secure land rights, supportive trade policies, and the required support services and facilities, including infrastructure. Locationally suitable land use evolved in areas where transportation facilities were available and farmers were granted land title with the necessary extension services and credit facilities. These findings have important policy implications for the promotion of environmentally and economically sound land use in CHT.  相似文献   
285.
Determining a remeasurement frequency of variables over time is required in monitoring environmental systems. This article demonstrates methods based on regression modeling and spatio-temporal variability to determine the time interval to remeasure the ground and vegetation cover factor on permanent plots for monitoring a soil erosion system. The spatio-temporal variability methods include use of historical data to predict semivariograms, modeling average temporal variability, and temporal interpolation by two-step kriging. The results show that for the cover factor, the relative errors of the prediction increase with an increased length of time interval between remeasurements when using the regression and semivariogram models. Given precision or accuracy requirements, appropriate time intervals can be determined. However, the remeasurement frequency also varies depending on the prediction interval time. As an alternative method, the range parameter of a semivariogram model can be used to quantify average temporal variability that approximates the maximum time interval between remeasurements. This method is simpler than regression and semivariogram modeling, but it requires a long-term dataset based on permanent plots. In addition, the temporal interpolation by two-step kriging is also used to determine the time interval. This method is applicable when remeasurements in time are not sufficient. If spatial and temporal remeasurements are sufficient, it can be expanded and applied to design spatial and temporal sampling simultaneously.  相似文献   
286.
287.
Russian Journal of Ecology - Changes in the distribution of broadleaf tree species—Tilia cordata Mill., Quercus robur L., Acer platanoides L., and Ulmus glabra Huds.—in the central part...  相似文献   
288.
In November 1928, Theodore Jr. and Kermit Roosevelt led an expedition to China with the expressed purpose of being the first Westerners to kill the giant panda (Ailuropoda melanoleuca). The expedition lasted 8 months and resulted in the brothers shooting a giant panda in the mountains of Sichuan Province. Given the concurrent attention in the popular press describing this celebrated expedition, the giant panda was poised to be trophy hunted much like other large mammals around the world. Today, however, the killing of giant pandas, even for the generation of conservation revenue, is unthinkable for reasons related to the species itself and the context, in time and space, in which the species was popularized in the West. We found that the giant panda's status as a conservation symbol, exceptional charisma and gentle disposition, rarity, value as a nonconsumptive ecotourism attraction, and endemism are integral to the explanation of why the species is not trophy hunted. We compared these intrinsic and extrinsic characteristics with 20 of the most common trophy-hunted mammals to determine whether the principles applying to giant pandas are generalizable to other species. Although certain characteristics of the 20 trophy-hunted mammals aligned with the giant panda, many did not. Charisma, economic value, and endemism, in particular, were comparatively unique to the giant panda. Our analysis suggests that, at present, exceptional characteristics may be necessary for certain mammals to be excepted from trophy hunting. However, because discourse relating to the role of trophy hunting in supporting conservation outcomes is dynamic in both science and society, we suspect these valuations will also change in future.  相似文献   
289.
Environmental Fluid Mechanics - A series of experiments were conducted to quantify the dynamics of a filling box driven by a line plume that spans the full width of the enclosure. Three...  相似文献   
290.
We apply predictive weather metrics and land model sensitivities to improve the Colorado State University Water Irrigation Scheduler for Efficient Application (WISE). WISE is an irrigation decision aid that integrates environmental and user information for optimizing water use. Rainfall forecasts and verification performance metrics are used to estimate predictive rainfall probabilities that are used as input data within the irrigation decision aid. These input data errors are also used within a land model sensitivity study to diagnose important prognostic water movement behaviors for irrigation tool development purposes simultaneously performing the analysis in space and time. Thus, important questions such as “how long can a crop water application be delayed while maintaining crop yield production?” are addressed by evaluating crop growth stage interactions as a function of soil depth (i.e., space), rainfall events (i.e., time), and their probabilistic uncertainties. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号