首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   4篇
  国内免费   2篇
安全科学   7篇
废物处理   20篇
环保管理   14篇
综合类   11篇
基础理论   30篇
环境理论   1篇
污染及防治   38篇
评价与监测   31篇
社会与环境   19篇
灾害及防治   1篇
  2023年   4篇
  2022年   21篇
  2021年   22篇
  2020年   4篇
  2019年   6篇
  2018年   12篇
  2017年   9篇
  2016年   16篇
  2015年   10篇
  2014年   6篇
  2013年   25篇
  2012年   8篇
  2011年   9篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
111.
Environmental Science and Pollution Research - Germanium as a strategic metalloid is widely used in high-tech devices. The most crucial germanium resources are rare and limited to zinc minerals,...  相似文献   
112.
Environmental Science and Pollution Research - The present study was carried out to elucidate effects of synthesized magnetic nanoparticles (MNPs) on morphological and physiological parameters and...  相似文献   
113.

The adsorption and photo-Fenton degradation of tetracycline (TC) over Fe-saturated nanoporous montmorillonite was analyzed. The synthesized samples were characterized using XRD, FTIR, SEM, and XRF analysis, and the adsorption and desorption of TC onto these samples, as well as the antimicrobial activity of TC during these processes, were analyzed at different pH. Initially, a set of adsorption/desorption experiments was conducted, and surprisingly, up to 50% of TC adsorbed was released from Mt structure. Moreover, the desorbed TC had strong antibacterial activity. Then, an acid treatment (for the creation of nanoporous layers) and Fe saturation of the montmorillonite were applied to improve its adsorption and photocatalytic degradation properties over TC. Surprisingly, the desorption of TC from modified montmorillonite was still high up to 40% of adsorbed TC. However, simultaneous adsorption and photodegradation of TC were detected and almost no antimicrobial activity was detected after 180 min of visible light irradiation, which could be due to the photo-Fenton degradation of TC on the modified montmorillonite surface. In the porous structures of modified montmorillonite high, ˙OH radicals were created in the photo-Fenton reaction and were measured using the Coumarin technique. The ˙OH radicals help the degradation of TC as proposed in an oxidation process. Surprisingly, more than 90% of antimicrobial activity of the TC decreased under visible light (after 180 min) when desorbed from nanoporous Fe-saturated montmorillonite compared to natural montmorillonite. To the best of our knowledge, this is the first time that such a high TC desorption rate from an adsorbent with the least residual antimicrobial activity is reported which makes nanoporous Fe-saturated montmorillonite a perfect separation substance of TC from the environment.

  相似文献   
114.
The Pars Special Economic Energy Zone (PSEEZ) is located in the south of Iran, on the northern coastline of the Persian Gulf. This area was established in 1998 for the utilization of south Pars field oil and gas resources. This field is one of the largest gas resources in the world and contains about 6% of the total fossil fuels known. Petrochemical industries, gas refineries and downstream industries are being constructed in this area. At present there are three gas refineries in operation and five more gas refineries are under construction. In this study, different types of solid waste including municipal solid waste (MSW) and industrial wastes were investigated separately. The aim of the study was to focus on the management of the industrial wastes in order to minimize the environmental impact. In the first stage, the types and amounts of industrial waste in PSEEZ were evaluated by an inventory. The main types of industrial waste are oil products (fuel oil, light oil, lubricating oil), spent catalysts, adsorbents, resins, coke, wax and packaging materials. The waste management of PSEEZ is quite complex because of the different types of industry and the diversity of industrial residues. In some cases recycling/reuse of waste is the best option, but treatment and disposal are also necessary tools. Recently a design has been prepared for a disposal site in PSEEZ for the industrial waste that cannot be reused or recycled. The total surface area of this disposal site where the industrial waste should be tipped for the next 20 years was estimated to be about 42 000 m2.  相似文献   
115.
116.
The RAMseS project, financed by the European Commission under the 6th framework Program, has the purpose of developing a solar powered agricultural vehicle in order to replace the conventional vehicles based on internal combustion engines (ICE). In the present study, we report a comparison of life-cycle emission between two systems; a conventional ICE vehicle (ICEV) and the RAMseS electrical vehicle (EV). The study has been conducted by designing a specific model and using the SimaPro software. The results show that the RAMseS system is considerably more environmentally friendly than conventional ICE based system and that, specifically, it can avoid the emission of about 23 ton of CO2equ per year. Regarding all other pollutants, we found that the RAMseS system is 2.6 times more efficient than the ICEV. The main contribution to emissions of the RAMseS system is due to the batteries which contribute for a 73% of the total. Therefore, further improvement can be obtained with the use of more advanced battery systems, not based on lead.  相似文献   
117.
CO<Subscript>2</Subscript> emission and economic growth of Iran   总被引:1,自引:0,他引:1  
This research investigates the relationship between CO2 emission and economic growth of Iran over 14 years from 1994 to 2007 using a national panel data set. The statistical and emission intensity methodologies are used for analyzing the data series. The study finds evidence supporting parameters which conclude the stability of significant correlation between CO2 emission and economic development over time during the years under investigation in Iran. This relationship is investigated and discussed for the energy sectors of the country as well. The results confirm that in all sectors except of agricultural, there is a positive strong correlation between CO2 emission and economic growth throughout the study period. In most sectors, CO2 emission intensity (the emission per unit of GDP) doesn’t show increasing trends while the absolute emission is rapidly increasing by the economic growth.  相似文献   
118.
A root or fibre-reinforced soil behaves as a composite material in which fibres of relatively high tensile strength are embedded in a matrix of relatively plastic soil. Shear stresses in the soil mobilize tensile resistance in the fibres, which in turn impart greater strength to the soil. A research project has been undertaken to study the influence of synthetic fibrous materials for improving the strength characteristics of a fine sandy soil. One of the main objectives of the project is to explore the conversion of fibrous carpet waste into a value-added product for soil reinforcement. Drained triaxial tests were conducted on specimens, which were prepared in a cylindrical mould and compacted at their optimum water contents. The main test variables included the aspect ratio and the weight percentage of the fibrous strips. The results clearly show that fibrous inclusions derived from carpet wastes improve the shear strength of silty sands. A model developed to simulate the effect of the fibrous inclusions accurately predicts the influence of strip content, aspect ratio and confining pressure on the shear strength of reinforced sand.  相似文献   
119.
In this study, a baffled photocatalytic reactor was used for the treatment of colored wastewater containing the azo dye of Acid Orange 52(AO52). A study on the active species of the photocatalytic process using TiO_2 nanoparticles indicated that hydroxyl radical and superoxide have the greatest contribution to the dye degradation process respectively.Given that a level of biological oxygen demand/chemical oxygen demand(BOD5/COD) equal to 0.4 was achieved after about 5 hr from the beginning of the experiment, the reactor seems to be capable of purifying the wastewater containing AO52 dye after this time in order to discharge into a biological treatment system to continue the treatment process.The results of the liquid chromatography-mass spectrometry(LC-MS) test showed that during the first 4 hr of the experiment, with the breakdown of the azo bond, the contaminant was decomposed into the benzene annular compounds with less toxicity indicating a reduction in the toxicity of wastewater after removing the dye agent. The study on the kinetics of these reactions followed the pseudo-first-order kinetic model in all conditions and corresponded well to Langmuir–Hinshelwood model. According to the kinetic model for the simultaneous occurrence of possible pathways, the kinetic constant of production and degradation of intermediate products in optimal conditions was estimated to be between 0.0029 and 0.0391 min~(-1).  相似文献   
120.
Underground coal gasification (UCG) has been identified as an environmentally friendly technique for gasification of deep un-mineable coal seams in situ. This technology has the potential to be a clean and promising energy provider from coal seams with minimal greenhouse gas emission. The UCG eliminates the presence of coal miners underground hence, it is believed to be a much safer technique compared to the deep coal mining method. The UCG includes drilling injection and production wells into the coal seam, igniting coal, and injecting oxygen-based mix to facilitate coal gasification. Produced syngas is extracted from the production well. Evolution of a cavity created from the gasification process along with high temperature as well as change in pore fluid pressure causes mechanical changes to the coal and surrounding formations. Therefore, simulation of the gasification process alone is not sufficient to represent this complex thermal-hydro-chemical–mechanical process. Instead, a coupled flow and geomechanical modeling can help better represent the process by allowing simultaneous observation of the syngas production, advancement of the gasification chamber, and the cavity growth. Adaptation of such a coupled simulation would aid in optimization of the UCG process while helping controlling and mitigating the environmental risks caused by geomechanical failure and syngas loss to the groundwater. This paper presents results of a sequentially coupled flow-geomechanical simulation of a three-dimensional (3D) UCG example using the numerical methodology devised in this study. The 3D model includes caprock on top, coal seam in the middle, and another layer of rock underneath. Gasification modeling was conducted in the Computer Modelling Group Ltd. (CMG)’s Steam, Thermal, and Advanced processes Reservoir Simulator (STARS). Temperature and fluid pressure of each grid block as well as the cavity geometry, at the timestep level, were passed from the STARS to the geomechanical simulator i.e. the Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) computer program (from the Itasca Consulting Group Inc.). Key features of the UCG process which were investigated herein include syngas flow rate, cavity growth, temperature and pressure profiles, porosity and permeability changes, and stress and deformation in coal and rock layers. It was observed that the coal matrix deformed towards the cavity, displacement and additional stress happened, and some blocks in the coal and rock layers mechanically failed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号