首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19404篇
  免费   175篇
  国内免费   140篇
安全科学   539篇
废物处理   657篇
环保管理   2474篇
综合类   4275篇
基础理论   4645篇
环境理论   11篇
污染及防治   4840篇
评价与监测   1062篇
社会与环境   1123篇
灾害及防治   93篇
  2022年   136篇
  2021年   148篇
  2018年   239篇
  2017年   262篇
  2016年   329篇
  2015年   263篇
  2014年   388篇
  2013年   1443篇
  2012年   525篇
  2011年   739篇
  2010年   556篇
  2009年   663篇
  2008年   759篇
  2007年   787篇
  2006年   720篇
  2005年   555篇
  2004年   550篇
  2003年   630篇
  2002年   517篇
  2001年   711篇
  2000年   504篇
  1999年   323篇
  1998年   200篇
  1997年   210篇
  1996年   231篇
  1995年   250篇
  1994年   270篇
  1993年   247篇
  1992年   246篇
  1991年   241篇
  1990年   275篇
  1989年   245篇
  1988年   224篇
  1987年   221篇
  1986年   199篇
  1985年   211篇
  1984年   198篇
  1983年   200篇
  1982年   208篇
  1981年   195篇
  1980年   182篇
  1979年   183篇
  1978年   169篇
  1977年   161篇
  1976年   170篇
  1975年   138篇
  1974年   166篇
  1973年   152篇
  1972年   149篇
  1967年   136篇
排序方式: 共有10000条查询结果,搜索用时 750 毫秒
771.
Particulate matter having an aerodynamic diameter less than 2.5 μm (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33–98% by mass of the organic compounds identified. PAHs accounted for 1–65% and biomarkers (hopanes and steranes) 1–8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07–1.55 ng m−3), 16 PAHs (0.02–1.83 ng m−3), and biomarkers (0.02–0.18 ng m−3). Daily levels of these organics were 4.89–74.38 ng m−3, 0.27–100.24 ng m−3, 0.14–4.39 ng m−3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source – most likely motor vehicles and space heating.  相似文献   
772.
This paper considers the evolution of attempts to control and manage air pollution, principally but not exclusively focussing upon the challenge of managing air pollution in urban environments. The development and implementation of a range of air pollution control measures are considered. Initially the measures implemented primarily addressed point sources, a small number of fuel types and a limited number of pollutants. The adequacy of such a source-control approach is assessed within the context of a changing and challenging air pollution climate. An assessment of air quality management in the United Kingdom over a 50-year timeframe exemplifies the range of issues and challenges in contemporary air quality management. The need for new approaches is explored and the development and implementation of an effects-based, risk management system for air quality regulation is evaluated.  相似文献   
773.
Knowledge on atmospheric abundance of peroxyacetyl nitrate (PAN) is important in assessing the severity of photochemical pollution, and for understanding chemical transformation of reactive odd nitrogen and its impact on the budget of tropospheric ozone (O3). In summer 2006, continuous measurements of PAN were made using an automatic GC–ECD analyzer with an on-line calibrator at a suburban site of Lanzhou (LZ) and a remote site of Mt. Waliguan (WLG) in western China, with concurrent measurements of O3, total reactive nitrogen (NOy) and carbon monoxide (CO). At LZ, several photochemical episodes were observed during the study, and the average mixing ratio of PAN (plus or minus standard deviation) was 0.76 (±0.89) ppbv with the maximum value of 9.13 ppbv, compared to an average value of 0.44 (±0.16) ppbv at remote WLG. The PAN mixing ratios in LZ exhibited strong diurnal variations with a maximum at noon, while enhanced concentrations of PAN were observed in the evening and a minimum in the afternoon at WLG. The daily O3 and PAN concentration maxima showed a strong correlation (r2 = 0.91) in LZ, with a regression slope (PAN/O3) of 0.091 ppbv ppbv?1. At WLG, six well-identified pollution plumes (lasting 2–8 h) were observed with elevated concentrations of PAN (and other trace gases), and analysis of backward particle release simulation shows that the high-PAN events at WLG were mostly associated with the transport of air masses that had passed over LZ.  相似文献   
774.
Little information is known about the behaviour of ultrafine particles (UFP) on a citywide scale. Total particle number flux, dominated by UFP, and other meteorological parameters were collected from tower sites in Manchester, London, Edinburgh and Gothenburg between 1999 and 2006 using the eddy covariance technique. Averaged diurnal cycles were produced for particle number flux, concentration, sensible heat flux, emission velocity, friction velocity, wind speed and temperature. UFP flux cycles showed clear diurnal trends which were linked to traffic activity and local sources. Wind sector analysis showed contributions to flux from local heavily urbanised areas. A simple parameterised model linking UFP flux to traffic activity, sensible heat and friction velocity above the city was produced.  相似文献   
775.
Ultrafine particles (UFPs, diameter < 100 nm) and co-emitted pollutants from traffic are a potential health threat to nearby populations. During summertime in Raleigh, North Carolina, UFPs were simultaneously measured upwind and downwind of a major roadway using a spatial matrix of five portable industrial hygiene samplers (measuring total counts of 20–1000 nm particles). While the upper sampling range of the portable samplers extends past the defined “ultrafine” upper limit (100 nm), the 20–1000 nm number counts had high correlation (Pearson R = 0.7–0.9) with UFPs (10–70 nm) measured by a co-located research-grade analyzer and thus appear to be driven by the ultrafine range. Highest UFP concentrations were observed during weekday morning work commutes, with levels at 20 m downwind from the road nearly fivefold higher than at an upwind station. A strong downwind spatial gradient was observed, linearly approximated over the first 100 m as an 8% drop in UFP counts per 10 m distance. This result agreed well with UFP spatial gradients estimated from past studies (ranging 5–12% drop per 10 m). Linear regression of other vehicle-related air pollutants measured in near real-time (10-min averages) against UFPs yielded moderate to high correlation with benzene (R2 = 0.76), toluene (R2 = 0.49), carbon monoxide (R2 = 0.74), nitric oxide (R2 = 0.80), and black carbon (R2 = 0.65). Overall, these results support the notion that near-road levels of UFPs are heavily influenced by traffic emissions and correlate with other vehicle-produced pollutants, including certain air toxics.  相似文献   
776.
Aircraft emissions affect air quality on scales from local to global. More than 20% of the jet fuel used in the U.S. is consumed by military aircraft, and emissions from this source are facing increasingly stringent environmental regulations, so improved methods for quickly and accurately determining emissions from existing and new engines are needed. This paper reports results of a study to advance the methods used for detailed characterization of military aircraft emissions, and provides emission factors for two aircraft: the F-15 fighter and the C-130 cargo plane. The measurements involved outdoor ground-level sampling downstream behind operational military aircraft. This permits rapid change-out of the aircraft so that engines can be tested quickly on operational aircraft. Measurements were made at throttle settings from idle to afterburner using a simple extractive probe in the dilute exhaust. Emission factors determined using this approach agree very well with those from the traditional method of extractive sampling at the exhaust exit. Emission factors are reported for CO2, CO, NO, NOx, and more than 60 hazardous and/or reactive organic gases. Particle size, mass and composition also were measured and are being reported separately. Comparison of the emissions of nine hazardous air pollutants from these two engines with emissions from nine other aircraft engines is discussed.  相似文献   
777.
During autumn, 2006, variation in the frequency of aerosol nucleation events, as inferred from nanoparticle growth events, and associated hygroscopicity were investigated as a function of air mass transport history at a mixed deciduous forest in central Virginia, U.S. Above-canopy size distributions of aerosols between 0.012 and 0.700 μm diameter, size-resolved particle hygroscopicity at eight dry diameters between 0.012 and 0.400 μm, and cloud condensation nuclei (CCN) activity were characterized. Air mass back trajectories were clustered to identify source regions. Growth events were most frequent in fast-moving air masses (mean = 9 m s?1) that originated over the north central U.S. Under these flow regimes, mean values for preexisting sub-μm aerosol number concentrations (4700 cm?3), corresponding surface area (142 μm2 cm?3), air temperature (6.2 °C), and relative humidity (RH, 49.4%) were relatively low compared to other regimes. Under stagnant flow conditions (mean = 3 m s?1), mean number concentrations were higher (>6000 cm?3) and size fractions <0.1 μm diameter exhibited enhanced hygroscopicity compared to other source regions. These results indicate that precursors emitted into relatively clean, cold, and dry air transported over the southeastern U.S. reacted to form condensable intermediates that subsequently produced new aerosols via nucleation and growth. This pathway was an important source for CCN. During events in October, nanoparticles were produced in greater numbers and grew more rapidly compared to November and December.  相似文献   
778.
Recent studies have used land use regression (LUR) techniques to explain spatial variability in exposures to PM2.5 and traffic-related pollutants. Factor analysis has been used to determine source contributions to measured concentrations. Few studies have combined these methods, however, to construct and explain latent source effects. In this study, we derive latent source factors using confirmatory factor analysis constrained to non-negative loadings, and develop LUR models to predict the influence of outdoor sources on latent source factors using GIS-based measures of traffic and other local sources, central site monitoring data, and meteorology. We collected 3–4 day samples of nitrogen dioxide (NO2) and PM2.5 outside of 44 homes in summer and winter, from 2003 to 2005 in and around Boston, Massachusetts. Reflectance analysis, X-ray fluorescence spectroscopy (XRF), and high-resolution inductively-coupled plasma mass spectrometry (ICP-MS) were performed on particle filters to estimate elemental carbon (EC), trace element, and water-soluble metals concentrations. Within our constrained factor analysis, a five-factor model was optimal, balancing statistical robustness and physical interpretability. This model produced loadings indicating long-range transport, brake wear/traffic exhaust, diesel exhaust, fuel oil combustion, and resuspended road dust. LUR models largely corroborated factor interpretations through covariate significance. For example, ‘long-range transport’ was predicted by central site PM2.5 and season; ‘brake wear/traffic exhaust’ and ‘resuspended road dust’ by traffic and residential density; ‘diesel exhaust’ by percent diesel traffic on nearest major road; and ‘fuel oil combustion’ by population density. Results suggest that outdoor residential PM2.5 source contributions can be partially predicted using GIS-based terms, and that LUR techniques can support factor interpretation for source apportionment. Together, LUR and factor analysis facilitate source identification, assessment of spatial and temporal variability, and more refined source exposure assignment for evaluation of source contributions to health outcomes in epidemiological studies.  相似文献   
779.
In Bilbao (Spain), an air quality network measures sulphur dioxide levels at 4 locations. The objective of this paper is to develop a practical methodology to identify redundant sensors and evaluate a network's capability to correctly follow and represent SO2 fields in Bilbao, in the frame of a continuous network optimization process.The methodology is developed and tested at this particular location, but it is general enough to be useable at other places as well, since it is not tied neither to the particular geographical characteristics of the place nor to the phenomenology of the air quality over the area.To assess the spatial variability of SO2 measured at 4 locations in the area, three different techniques have been used: Self-Organizing Maps (SOMs), cluster analysis (CA) and Principal Component Analysis (PCA). The results show that the three techniques yield the same results, but the information obtained via PCA can be helpful not only for that purpose but also to throw light on the major mechanisms involved. This might be used in future network optimization stages. The main advantage of cluster analysis and SOMs is that they provide readily interpretable results. All the calculations have been carried out using the freely available software R.  相似文献   
780.
The average particle number concentration kerbside at a busy street in Copenhagen has been reduced by 27% from the period 2002–2004 to the period 2005–2007. The reduction is in the ultrafine particle range (<100 nm). Strong evidence indicates that a significant part of the reduction, especially in the size range <30 nm, is due to the transition to sulphur-free (<10 ppm) diesel fuel and petrol in Denmark at New Year 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号