首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2923篇
  免费   70篇
  国内免费   30篇
安全科学   153篇
废物处理   110篇
环保管理   804篇
综合类   263篇
基础理论   693篇
环境理论   2篇
污染及防治   694篇
评价与监测   174篇
社会与环境   109篇
灾害及防治   21篇
  2023年   18篇
  2022年   21篇
  2021年   31篇
  2020年   35篇
  2019年   38篇
  2018年   57篇
  2017年   61篇
  2016年   99篇
  2015年   62篇
  2014年   69篇
  2013年   309篇
  2012年   106篇
  2011年   162篇
  2010年   126篇
  2009年   138篇
  2008年   142篇
  2007年   154篇
  2006年   131篇
  2005年   79篇
  2004年   108篇
  2003年   101篇
  2002年   92篇
  2001年   56篇
  2000年   45篇
  1999年   44篇
  1998年   39篇
  1997年   40篇
  1996年   46篇
  1995年   55篇
  1994年   42篇
  1993年   41篇
  1992年   24篇
  1991年   31篇
  1990年   36篇
  1989年   24篇
  1988年   30篇
  1987年   27篇
  1986年   38篇
  1985年   22篇
  1984年   38篇
  1983年   28篇
  1982年   33篇
  1981年   33篇
  1980年   18篇
  1979年   18篇
  1978年   12篇
  1977年   10篇
  1976年   9篇
  1974年   10篇
  1972年   9篇
排序方式: 共有3023条查询结果,搜索用时 31 毫秒
921.
U.S. EPA Region IX is supporting bioassessment programs in Arizona, California, Hawaii and Nevada using biocriteria program and Regional Environmental Monitoring and Assessment Program (R-EMAP) resources. These programs are designed to improve the state, tribal and regional ability to determine the status of water quality. Biocriteria program funds were used to coordinate with Arizona, California and Hawaii which resulted in these states establishing reference conditions and in developing biological indices. U.S. EPA Region IX has initiated R-EMAP projects in California and Nevada. These U.S. EPA Region IX sponsored programs have provided an opportunity to interact with the States and provide them with technical and management support. In Arizona, several projects are being conducted to develop the State's bioassessment program. These include the development of a rotational random monitoring program; a regional reference approach for macroinvertebrate bioassessments; ecoregion approach to testing and adoption of an alternate regional classification system; and development of warm-water and cold-water indices of biological integrity. The indices are projected to be used in the Arizona Department of Environmental Quality (ADEQ) 2000 water quality assessment report. In California, an Index of Biological Integrity (IBI) has been developed for the Russian River Watershed using resources from U.S. EPA's Non-point Source (NPS) Program grants. A regional IBI is under development for certain water bodies in the San Diego Regional Water Quality Control Board. Resources from the U.S. EPA Biocriteria program are being used to support the California Aquatic Bioassessment Workgroup (CABW) in conjunction with the California Department of Fish & Game (CDFG), and to support the Hawaii Department of Health (DoH) Bioassessment Program to refine biological metrics. In Nevada, R-EMAP resources are being used to create a baseline of aquatic information for the Humboldt River watershed. U.S. EPA Region IX is presently working with the Nevada Division of Environmental Protection (NDEP) to establish a Nevada Aquatic Bioassessment Workgroup. Future R-EMAP studies will occur in the Calleguas Creek watershed in Southern California, and in the Muddy and Virgin River watersheds in southern Nevada, and the Walker River watershed in eastern California and west-central Nevada.  相似文献   
922.
Identification of reference streams and human disturbance gradients are crucial steps in assessing the effects of human disturbances on stream health. We describe a process for identifying reference stream reaches and assessing disturbance gradients using readily available, geo-referenced stream and human disturbance databases. We demonstrate the utility of this process by applying it to wadeable streams in Michigan, USA, and use it to identify which human disturbances have the greatest impact on streams. Approximately 38% of cold-water and 16% of warm-water streams in Michigan were identified as being in least-disturbed condition. Conversely, approximately 3% of cold-water and 4% of warm-water streams were moderately to severely disturbed by landscape human disturbances. Anthropogenic disturbances that had the greatest impact on moderately to severely disturbed streams were nutrient loading and percent urban land use within network watersheds. Our process for assessing stream health represents a significant advantage over other routinely used methods. It uses inter-confluence stream reaches as an assessment unit, permits the evaluation of stream health across large regions, and yields an overall disturbance index that is a weighted sum of multiple disturbance factors. The robustness of our approach is linked to the scale of disturbances that affect a stream; it will be less robust for identifying less degraded or reference streams with localized human disturbances. With improved availability of high-resolution disturbance datasets, this approach will provide a more complete picture of reference stream reaches and factors contributing to degradation of stream health.  相似文献   
923.
Methods for estimating airborne contaminant concentrations at specific locations within enclosed spaces, such as mathematical models and computational fluid dynamics (CFD), often are validated against directly measured concentrations. However, concentration variation with time introduces uncertainty into the measured concentration. Failure to determine monitoring time requirements can lead to errors in quantifying representative concentrations, which are likely to be attributed to errors in the method being validated. In the current study, to obtain the representative concentrations at multiple locations with a direct reading instrument, we used the standard deviation ratio (SDR) method to determine the required minimum monitoring time within a specified precision limit. To demonstrate the use of the SDR approach in constructing precision confidence intervals, tracer gas concentrations at nine sampling locations in an experimental room were measured to obtain population parameters. Three flow rates of 0.9, 3.3 and 5.5 m(3) min(-1) were employed and contaminant concentrations were measured using a photoionization analyser. Monitoring time requirements varied substantially with location within the room and were strongly dependent upon the flow rate of air through the room. The proposed method would be very useful for industrial hygienists and indoor air researchers who sometimes need to obtain several hundred measured concentrations for validation purposes or to perform tests under repeatable conditions in enclosed spaces. This study also showed that the proposed method can be used to devise efficient indoor monitoring strategies.  相似文献   
924.
925.
926.
Flaring is a technique used extensively in the oil and gas industry to burn unwanted flammable gases. Oxidation of the gas can preclude emissions of methane (a potent greenhouse gas); however, flaring creates other pollutant emissions such as particulate matter (PM) in the form of soot or black carbon (BC). Currently available PM emissionfactors for flares were reviewed and found to be questionably accurate, or based on measurements not directly relevant to open-atmosphere flares. In addition, most previous studies of soot emissions from turbulent diffusion flames considered alkene or alkyne based gaseous fuels, and few considered mixed fuels in detail and/or lower sooting propensity fuels such as methane, which is the predominant constituent of gas flared in the upstream oil and gas industry. Quantitative emission measurements were performed on laboratory-scale flares for a range of burner diameters, exit velocities, and fuel compositions. Drawing from established standards, a sampling protocol was developed that employed both gravimetric analysis of filter samples and real-time measurements of soot volume fraction using a laser-induced incandescence (LII) system. For the full range of conditions tested (burner inner diameter [ID] of 12.7-76.2 mm, exit velocity 0.1-2.2 m/sec, 4- and 6-component methane-based fuel mixtures representative of associated gas in the upstream oil industry), measured soot emission factors were less than 0.84 kg soot/10(3) m3 fuel. A simple empirical relationship is presented to estimate the PM emission factor as a function of the fuel heating value for a range of conditions, which, although still limited, is an improvement over currently available emission factors.  相似文献   
927.
To assess the impact of past, current and proposed air quality regulations on coarse particulate matter (CPM), the concentrations of CPM mass and its chemical constituents were examined in the Los Angeles Basin from 1986 to 2009 using PM data acquired from peer-reviewed journals and regulatory agency database. PM10 mass levels decreased by approximately half from 1988 to 2009 at the three sampling sites examined- located in downtown Los Angeles, Long Beach and Riverside. Annual CPM mass concentrations were calculated from the difference between daily PM10 and PM2.5 from 1999 to 2009. High CPM episodes driven by high wind speed/stagnant condition caused year-to-year fluctuations in the 99th/98th percentile CPM levels. The reductions of average CPM levels were lower than those of PM10 in the same period, therefore the decrease of PM10 level was mainly driven by reductions in the emission levels of PM2.5 (or fine) particles, as demonstrated by the higher annual reduction of average PM2.5 (0.92 microg/m3) compared with CPM (0.39 microg/m3) from 1999 to 2009 in downtown Los Angeles despite their comparable concentrations. This is further confirmed by the significant decrease of Ni, Cr, V and EC in the coarse fraction after 1995. On the other hand, the levels of several inorganic ions (sulfate, chloride and to a lesser extent nitrate) remained comparable. From 1995 to 2008, levels of Cu, a tracer of brake wear, either remained similar or decreased at a smaller rate compared with elements of combustion origins. This differential reduction of CPM components suggests that past and current regulations may have been more effective in reducing fugitive dust (Al, Fe and Si) and combustion emissions (Ni, Cr, V, and EC) rather than CPM from vehicular abrasion (Cu) and inorganic ions (NO3(-), SO4(2-) and Cl(-)) in urban areas. Implications: Limited information is currently available to provide the scientific basis for understanding the sources and physical and chemical variations of CPM, and their relations to air quality regulations and adverse health effects. This study investigates the historical trends of CPM mass and its chemical components in the Los Angeles Basin to advance our understanding on the impact of past and current air quality regulations on the coarse fraction of PM. The results of this study will aid policy makers to design more targeted regulations to control CPM sources to ensure substantial protection of public health from CPM exposure. Supplemental Materials: Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for (1) details of the sampling sites and (2) the daily concentrations of high CPM/PM10 episodes.  相似文献   
928.
The land application of aged chortetracycle (CTC) and tylosin-containing swine manure was investigated to determine associated impacts to soil microbial respiration, nutrient (phosphorus, ammonium, nitrate) cycling, and soil microbial community structure under laboratory conditions. Two silty clay loam soils common to southeastern South Dakota were used. Aerobic soil respiration results using batch reactors containing a soil-manure mixture showed that interactions between soil, native soil microbial populations, and antimicrobials influenced CO2 generation. The aged tylosin treatment resulted in the greatest degree of CO2 inhibition, while the aged CTC treatment was similar to the no-antimicrobial treatment. For soil columns in which manure was applied at a one-time agronomic loading rate, there was no significant difference in soil-P behavior between either aged CTC or tylosin and the no-antimicrobial treatment. For soil-nitrogen (ammonium and nitrate), the aged CTC treatment resulted in rapid ammonium accumulation at the deeper 40cm soil column depth, while nitrate production was minimal. The aged CTC treatment microbial community structure was different than the no-antimicrobial treatment, where amines/amide and carbohydrate chemical guilds utilization profile were low. The aged tylosin treatment also resulted in ammonium accumulation at 40 cm column depth, however nitrate accumulation also occurred concurrently at 10 cm. The microbial community structure for the aged tylosin was also significantly different than the no-antimicrobial treatment, with a higher degree of amines/amides and carbohydrate chemical guild utilization compared to the no-antimicrobial treatment. Study results suggest that land application of CTC and tylosin-containing manure appears to fundamentally change microbial-mediated nitrogen behavior within soil A horizons.  相似文献   
929.
The 1988 Air Quality Management Plan was approved by the Board of the California South Coast Air Quality Management District in March 1989. The District comprises the counties of Los Angeles, Orange, and Riverside, and the non-desert portion of San Bernardino county. Emissions reductions in the past have lead to significant improvement in air quality despite large increases in growth. However, the District, largely because of continuous growth, currently violates the air quality standards for ozone, carbon monoxide, nitrogen dioxide, and respirable particulate matter (PM10). Based upon the AQMP, reduction of approximately 80 percent in emissions of oxides of nitrogen and volatile organic compounds is required to bring the District into compliance with all air quality standards in the next twenty years.

Achieving compliance will necessitate the use of advanced technologies, as well as some changes in lifestyle and management practices. Advanced technologies, including the use of electric vehicles powered by batteries or fuel cells, the use of cleaner burning fuels and advanced combustion modifications, and treatment of surface coatings and solvents are included in the AQMP. The Technology Advancement Office in the District was created to work with industry, universities, research institutes, and other local, state and federal agencies to identify, evaluate, and promote low emitting fuels and technologies. In addition to electricity, fuels burning cleaner than conventional gasoline or diesel are being tested to obtain emissions and durability data so that rational choices can be made for the future. Compressed natural gas, methanol and liquefied petroleum gas are considered to be cleaner burning fuels for current applications. Ethanol, butane, and various oxygenated blends are being evaluated, and the broader application of solar energy and hydrogen are being investigated.

The impact of various cleaner burning fuels on air quality is being addressed. To date, methanol is the only fuel for which results are available. These results indicate that methanol use in vehicles—with control of formaldehyde emissions below 15 mg/mile for light-duty vehicles—can provide air quality benefits for all criteria pollutants and certain air toxics. These benefits are greater for M100 than M85.

Several District advanced technology programs are described, including a reduction in emissions from paints and coatings, and the demonstration of electric vehicles.  相似文献   
930.
The body of information presented in this paper is directed to those individuals concerned with developing or implementing screening strategies for characterizing organic emissions from incinerators and other combustion sources. The need to characterize hazardous waste incinerator emissions for multiple organic compounds has been steadily increasing for several years. The regulatory approach makes use of a type of indicator compound procedure that concentrates on principal organic hazardous constituents (POHCs). In addition to continuing interest in POHCs, interest has been growing in the types and concentrations of products of incomplete combustion (PICs). Sampling and analysis methods have been developed previously for approximately 225 of the more important POHCs and PICs. These methods may be used as components of a cost-effective screening protocol aimed at maximum characterization of emissions, whether the project budget is large or small. This paper contains a discussion of fundamental principles of several kinds of screening strategies and recommends an approach suitable for incinerators and other combustion sources. The concept of a risk-driven analysis strategy is introduced and illustrated with a simplified example.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号