首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   0篇
  国内免费   1篇
安全科学   3篇
废物处理   3篇
环保管理   6篇
综合类   15篇
基础理论   4篇
污染及防治   18篇
评价与监测   12篇
社会与环境   1篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
31.
Environmental Science and Pollution Research - Water chlorination is the most widely used technique to avoid microbial contamination and biofouling. Adding chlorine to bromide-rich waters leads to...  相似文献   
32.

Background, aim and scope

Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments.

Results and discussion

Sediment texture was uniform in the cores from both reservoirs. Laminated sediment structure, without any obvious discontinuities, was observed. Hg concentrations in the sediment core from the Valcea Reservoir were low and constant (0.01–0.08 mg/kg). In Babeni Reservoir sediments, Hg concentrations were very high in the deeper core section (up to 45 mg/kg in the longest core) and decreased to lower concentrations toward the top of the cores (1.3–2.4 mg/kg). This decrease probably reflects technological progress in control of emissions from the Hg-cell-based chlor-alkali industry. Two strong peaks could be distinguished in older sediments. The mean rate of sedimentation (5.9 cm/year) was calculated from the depth of the 137Cs Chernobyl peak. This was in good agreement with the sedimentation rate estimated at this site from a bathymetric study. Assuming a constant sedimentation rate, the two Hg peaks would reflect two contamination events in 1987 and 1991, respectively. However, it is also possible that the two peaks belong to the same contamination event in 1987 but were separated by a sediment layer richer in sand and silt. This layer had a low Hg concentration, which can be interpreted as a mass deposition event related to a major flood bringing Hg-free sediments.

Conclusions

Whilst the chlor-alkali plant partly switched to a cleaner technology in 1999, no obvious decrease of Hg concentrations was observed in recent decade. Results from the sediment core reflected the historical trend of Hg release from the chlor-alkali plant, revealed important contamination episodes and confirmed a legacy of contamination of Hg in recent sediments even if the concentrations of Hg decreased toward the surface due to a more efficient emission control.

Recommendations and perspectives

Although the Hg concentrations in Babeni Reservoir sediments were extremely high in the late eighties and they remain one order of magnitude higher in the surface sediments than in sediments from the upstream reservoir, little is known about the transfer of Hg to the biota and human population. Our initial measurements indicate the presence of monomethyl-Hg (MMHg) in pore water, but further studies are necessary to evaluate fluxes of MMHg at the sediment–water interface. Samples of fish and hair from various groups of the local population were recently collected to evaluate the potential hazard of Hg contamination to human health in the Rm Valcea region.
  相似文献   
33.

Background, aim and scope  

Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments.  相似文献   
34.
The occurrence of magnetotactic bacteria (MTB) on a Tunisian marine coast exposed to heavy metals pollution (Sfax, Gulf of Gabès, Mediterranean Sea) was investigated. The MTB population of this Southern Mediterranean coast was compared to the MTB populations previously investigated on the French Northern Mediterranean coast. A dominant MTB coccus morphotype was observed by microscopy analysis. By pyrosequencing technology, the analysis of the 16S ribosomal RNA (rDNA) revealed as much as 33 operational taxonomic sequence units (OTUs) close to sequences of MTB accessible in the databases. The majority were close to MTB sequences of the “Med group” of α-Proteobacteria. Among them, a dominant OTU_001 (99 % of the MTB sequences) affiliated within the Magnetococcales order was highlighted. Investigating the capacities of this novel bacterium to be used in bioremediation and/or depollution processes could be envisaged.  相似文献   
35.
The larvae of the sawfly Rhadinoceraea micans live and feed on a semi-aquatic plant, Iris pseudacorus, and their integument is strongly hydrophobic. The hydrophobicity is part of a chemical defence strategy, easy bleeding, also known from congeners. The prepupae burrow into the soil where they form a cocoon in which they pupate, thus implying different micro-environmental conditions. The cuticle structure and wetting defensive effectiveness of R. micans were compared between larvae and prepupae. The two stages were similarly well defended against attacking ants by the bleeding of a deterrent hemolymph, whereas they were dissimilar in the cuticle surface that presented sculptures and wax crystals at the larval stage only. The integument of prepupae was less structured, and hydrophilic. Larvae of R. micans exhibit, among sawflies, an exceptional cuticle structuring and we assume that they occupy this particular niche of a semi-aquatic environment to avoid encounters with ground-dwelling predators whereas prepupae may benefit from the chemical defence acquired at larval stage.  相似文献   
36.
37.
38.
Background, aim and scope

Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments.

Results and discussion

Sediment texture was uniform in the cores from both reservoirs. Laminated sediment structure, without any obvious discontinuities, was observed. Hg concentrations in the sediment core from the Valcea Reservoir were low and constant (0.01–0.08 mg/kg). In Babeni Reservoir sediments, Hg concentrations were very high in the deeper core section (up to 45 mg/kg in the longest core) and decreased to lower concentrations toward the top of the cores (1.3–2.4 mg/kg). This decrease probably reflects technological progress in control of emissions from the Hg-cell-based chlor-alkali industry. Two strong peaks could be distinguished in older sediments. The mean rate of sedimentation (5.9 cm/year) was calculated from the depth of the 137Cs Chernobyl peak. This was in good agreement with the sedimentation rate estimated at this site from a bathymetric study. Assuming a constant sedimentation rate, the two Hg peaks would reflect two contamination events in 1987 and 1991, respectively. However, it is also possible that the two peaks belong to the same contamination event in 1987 but were separated by a sediment layer richer in sand and silt. This layer had a low Hg concentration, which can be interpreted as a mass deposition event related to a major flood bringing Hg-free sediments.

Conclusions

Whilst the chlor-alkali plant partly switched to a cleaner technology in 1999, no obvious decrease of Hg concentrations was observed in recent decade. Results from the sediment core reflected the historical trend of Hg release from the chlor-alkali plant, revealed important contamination episodes and confirmed a legacy of contamination of Hg in recent sediments even if the concentrations of Hg decreased toward the surface due to a more efficient emission control.

Recommendations and perspectives

Although the Hg concentrations in Babeni Reservoir sediments were extremely high in the late eighties and they remain one order of magnitude higher in the surface sediments than in sediments from the upstream reservoir, little is known about the transfer of Hg to the biota and human population. Our initial measurements indicate the presence of monomethyl-Hg (MMHg) in pore water, but further studies are necessary to evaluate fluxes of MMHg at the sediment–water interface. Samples of fish and hair from various groups of the local population were recently collected to evaluate the potential hazard of Hg contamination to human health in the Rm Valcea region.

  相似文献   
39.
Complex toxic effects of Cd2+, Zn2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L) were studied in a pot experiment by measurement of fresh weights of the plants, determination of surperoxide dismutase (SOD), peroxidase (POD), and lipid peroxidation (MDA) in the plant organs, and observation of injury symptoms. The experimental results demonstrated that all treatments of Cd2+, Zn2+, and/or acid rain significantly decreased fresh weights of kidney bean and caused toxic effects on growth of the plants, especially higher amounts of Cd2+ and Zn2+ and higher acidity of acid rain. Combination of these three pollutant factors resulted in more serious toxic effects than any single pollutant and than combinations of any two pollutants. SOD, POD, and MDA in the plant organs changed with different pollution levels, but MDA content in the leaves showed the best relationship between the pollution levels and toxic effects.  相似文献   
40.
The objective of this study was to assess the time variation of mineral and water stress levels across the life of a declining, Mg-deficient, spruce stand, in order to clarify the factors that caused the decline. Since 1985, strong soil acidification linked to a large leaching of nitrate and base cations was measured at the study site. In 1994, 5 trees were felled and tree rings were measured and analysed for Ca, Mg, K, Sr, 13C12C and 87Sr/86Sr isotopic ratios. Strontium pools and fluxes as well as root Sr isotope ratio in relation to depth were also measured. Wood chemical concentrations and isotope ratios were strongly related to the dominance status of each tree. On average during the study period, the 87Sr/86Sr ratio of spruce wood decreased. Using a mechanistic model computing long term variations of 87Sr/86Sr ratio in trees and soils, we reproduced the observed trend by simulating soil acidification – increasing Sr drainage from the whole profile, and particularly from the organic horizon –, and root uptake becoming more superficial with time. Between 1952 and 1976, tree ring 13C decreased strongly and continuously, which, in addition to other factors, might be related to an increase in water stress. Thus, a decrease in rooting depth, possibly related to soil acidification, appeared as a possible cause for the long term increase in water stress. The extreme drought event of 1976 appears to have revealed and triggered the decline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号