首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   899篇
  免费   12篇
  国内免费   11篇
安全科学   39篇
废物处理   32篇
环保管理   205篇
综合类   121篇
基础理论   224篇
污染及防治   203篇
评价与监测   67篇
社会与环境   24篇
灾害及防治   7篇
  2023年   6篇
  2022年   9篇
  2021年   8篇
  2020年   17篇
  2019年   13篇
  2018年   14篇
  2017年   12篇
  2016年   18篇
  2015年   18篇
  2014年   29篇
  2013年   84篇
  2012年   34篇
  2011年   56篇
  2010年   29篇
  2009年   42篇
  2008年   43篇
  2007年   67篇
  2006年   35篇
  2005年   31篇
  2004年   28篇
  2003年   30篇
  2002年   32篇
  2001年   26篇
  2000年   15篇
  1999年   13篇
  1998年   11篇
  1997年   13篇
  1996年   12篇
  1995年   7篇
  1994年   14篇
  1993年   13篇
  1992年   7篇
  1991年   6篇
  1990年   10篇
  1989年   12篇
  1988年   6篇
  1987年   9篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1983年   5篇
  1982年   4篇
  1981年   12篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1975年   8篇
  1974年   5篇
  1972年   3篇
排序方式: 共有922条查询结果,搜索用时 31 毫秒
221.
222.
We investigated a two-week episode with high PM concentrations in California Central Valley during the Christmas–New Year of 2000–2001 using a modeling system that consists of a computationally efficient, 3-D photochemical–microphysical transport model, a mesoscale meteorological model, emission models, and an evaluation package. One hundred simulations were conducted with fine resolutions and observational constraints, to reproduce spatial and temporal features of observed PM concentrations and to understand the formation mechanism of the episode. Simulated PM concentrations consist of secondary inorganic components, mainly ammonium nitrate, and total carbon in areas with elevated concentrations in the accumulation mode, and consist of mainly dust and sea salt in the coarse mode. Simulated oxidants and nitrate were significantly elevated over the valley, and the latter showed much less amplitude than the former. Simulated PM concentrations were evaluated with observations systematically with spatially and temporally paired method, a more restrictive multivariate method (NMFROC), and a more flexible “gradient evaluation” method. The paired evaluation shows that high correlation coefficient (R = ~0.8) and low fractional error (FE = ~0.1) could be achieved at stations with elevated 24-h concentration of PM in the accumulation mode in some simulations. The NMFROC method was used to extract useful information from seemingly failed simulations. A “gradient evaluation” method is introduced here to extract additional information from simulations. We found that emission reductions of NOx and AVOC showed similar effects on percentage basis in different areas, and both are more effective than reducing NH3 for abating elevated concentrations of accumulation mode PM in California Central Valley during the winter episode.  相似文献   
223.
224.
Integrated Measures of Anthropogenic Stress in the U.S. Great Lakes Basin   总被引:1,自引:0,他引:1  
Integrated, quantitative expressions of anthropogenic stress over large geographic regions can be valuable tools in environmental research and management. Despite the fundamental appeal of a regional approach, development of regional stress measures remains one of the most important current challenges in environmental science. Using publicly available, pre-existing spatial datasets, we developed a geographic information system database of 86 variables related to five classes of anthropogenic stress in the U.S. Great Lakes basin: agriculture, atmospheric deposition, human population, land cover, and point source pollution. The original variables were quantified by a variety of data types over a broad range of spatial and classification resolutions. We summarized the original data for 762 watershed-based units that comprise the U.S. portion of the basin and then used principal components analysis to develop overall stress measures within each stress category. We developed a cumulative stress index by combining the first principal component from each of the five stress categories. Maps of the stress measures illustrate strong spatial patterns across the basin, with the greatest amount of stress occurring on the western shore of Lake Michigan, southwest Lake Erie, and southeastern Lake Ontario. We found strong relationships between the stress measures and characteristics of bird communities, fish communities, and water chemistry measurements from the coastal region. The stress measures are taken to represent the major threats to coastal ecosystems in the U.S. Great Lakes. Such regional-scale efforts are critical for understanding relationships between human disturbance and ecosystem response, and can be used to guide environmental decision-making at both regional and local scales.  相似文献   
225.
The chemical processes responsible for production of photochemical oxidants within the troposphere have been the subject of laboratory and field study throughout the last three decades. During the same period, models to simulate the atmospheric chemistry, transport and deposition of ozone (O(3)) from individual urban sources and from regions have been developed. The models differ greatly in the complexity of chemical schemes, in the underlying meteorology and in spatial and temporal resolution. Input information from land use, spatial and temporally disaggregated emission inventories and meteorology have all improved considerably in recent years and are not fully implemented in current models. The development of control strategies in both North America and Europe to close the gaps between current exceedances of environmental limits, guide values, critical levels or loads and full compliance with these limits provides the focus for policy makers and the support agencies for the research. The models represent the only method of testing a range of control options in advance of implementation. This paper describes currently applied models of photochemical oxidant production and transport at global and regional scales and their ability to simulate individual episodes as well as photochemical oxidant climatology. The success of current models in quantifying the exposure of terrestrial surfaces and the population to potentially damaging O(3) concentrations (and dose) is examined. The analysis shows the degree to which the underlying processes and their application within the models limit the quality of the model products.  相似文献   
226.
Several approaches have been used to evaluate biological impairment in aquatic ecosystems which can be categorized as either laboratory or field. In the recent years, the laboratory toxicity test approach has been extended to field exposures where ambient factors are allowed to influence the test response. Field exposures of laboratory test organisms require method modifications. In this paper, a novel in situ method is described which measures growth, survival and emergence of sediment inhabiting insects (Diptera: Chironomidae) that are used in standardized laboratory toxicity testing. Two standard chironomid species (Chironomus riparius and Chironomus tentans) were used to test the suitability of the approach and to compare the performance of the species. The larvae were transferred to the laboratory for emergence after 7 days in situ exposure which was compared to laboratory responses. Growth, survival and emergence were significantly lower in the in situ pre-exposure than in the laboratory. Also, emergence success was significantly lower in one reference sediment (LMR) than in the other test sediments in both in situ and the laboratory treatment. These lower response levels likely resulted from sediment characteristics and artifacts related to the exposure in the in situ chamber. Feeding and water quality within the exposure chamber appear to be factors that may differ markedly from the laboratory exposure and may affect organism responses. C. riparius developed (growth, emergence time) faster than C. tentans in all treatments, otherwise the species responded similarly. C. riparius may be a better alternative for the chronic in situ exposures because of shorter exposure times and reduced feeding requirements.  相似文献   
227.
Johnson DW 《Ecology》2006,87(5):1179-1188
Density dependence in demographic rates can strongly affect the dynamics of populations. However, the mechanisms generating density dependence (e.g., predation) are also dynamic processes and may be influenced by local conditions. Understanding the manner in which local habitat features affect the occurrence and/or strength of density dependence will increase our understanding of population dynamics in heterogeneous environments. In this study I conducted two separate field experiments to investigate how local predator density and habitat complexity affect the occurrence and form of density-dependent mortality of juvenile rockfishes (Sebastes spp.). I also used yearly censuses of rockfish populations on nearshore reefs throughout central California to evaluate mortality of juvenile rockfish at large spatial scales. Manipulations of predators (juvenile bocaccio, S. paucispinus) and prey (kelp, gopher, and black-and-yellow [KGB] rockfish, Sebastes spp.) demonstrated that increasing the density of predators altered their functional response and thus altered patterns of density dependence in mortality of their prey. At low densities of predators, the number of prey consumed per predator was a decelerating function, and mortality of prey was inversely density dependent. However, at high densities of predators, the number of prey killed per predator became an accelerating response, and prey mortality was directly density dependent. Results of field experiments and large-scale surveys both indicated that the strength of density-dependent mortality may also be affected by the structural complexity of the habitat. In small-scale field experiments, increased habitat complexity increased the strength of density-dependent mortality. However, at large scales, increasing complexity resulted in a decrease in the strength of density dependence. I suggest that these differences resulted from scale-dependent changes in the predatory response that generated mortality. Whether increased habitat complexity leads to an increase or a decrease in the strength of density-dependent mortality may depend on how specific predatory responses (e.g., functional or aggregative) are altered by habitat complexity. Overall, the findings of this study suggest that rates of demographic density dependence and the resulting dynamics of local populations may largely depend upon attributes of the local habitat.  相似文献   
228.
229.
The impact of major gaseous and particulate pollutants emitted by the wildfire of October 2003 on ambient air quality and health of San Diego residents before, during, and after the fire are analyzed using data available from the San Diego County Air Pollution Control District and California Air Resources Board. It was found that fine particulate matter (PM) levels exceeded the federal daily 24-hr average standard during the fire. There was a slight increase in some of the gaseous pollutants, such as carbon monoxide, which exceeded federal standards. Ozone (O3) precursors, such as total hydrocarbons and methane gases, experienced elevated concentration during the fire. Fortunately, the absence of sunlight because of the cloud of thick smoke that covered most of the county during the fire appears to have prevented the photochemical conversion of the precursor gases to harmful concentrations of O3. Statistical analysis of the compiled medical surveillance data has been used to establish correlations between pollutant levels in the region and the resultant health problems experienced by the county citizens. The study shows that the increased PM concentration above the federal standard resulted in a significant increase in hospital emergency room visits for asthma, respiratory problems, eye irritation, and smoke inhalation. On the basis of the findings, it is recommended that hospitals and emergency medical facilities engage in pre-event planning that would ensure a rapid response to an impact on the healthcare system as a result of a large wildfire and appropriate agencies engage in the use of all available meteorological forecasting resources, including real-time satellite imaging assets, to accurately forecast air quality and assist firefighting efforts.  相似文献   
230.
Despite efforts at prevention through the use of preconception folic acid, spina bifida remains one of the most common congenital anomalies of the central nervous system that is compatible with life. It is, however, associated with a significant degree of lifelong morbidity. The development of open fetal surgery for myelomeningocele (MMC) has been a long process but one that serves as a model for how new procedures and technologies need to be properly evaluated before being brought into mainstream medical practice. Even so, risks and benefits need to be evaluated for each patient. The currently available studies have been carried out on a highly selected patient population where the fetal findings provided the maximum opportunity for benefit from prenatal closure of the MMC defect. There is the potential that as the surgery becomes more widely available, pressure will be brought to bear to perform surgery in cases where the likelihood for benefit is decreased and yet the risks are not. The only way to duplicate the results of the current studies is to follow the methodology and criteria that were used in the studies. This will mean that not every fetus with an MMC will be a candidate for in utero surgery. The balance of risk to benefit will continue to evolve as further technological advances are evaluated and more follow-up information is obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号