首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   899篇
  免费   12篇
  国内免费   11篇
安全科学   39篇
废物处理   32篇
环保管理   205篇
综合类   121篇
基础理论   224篇
污染及防治   203篇
评价与监测   67篇
社会与环境   24篇
灾害及防治   7篇
  2023年   6篇
  2022年   9篇
  2021年   8篇
  2020年   17篇
  2019年   13篇
  2018年   14篇
  2017年   12篇
  2016年   18篇
  2015年   18篇
  2014年   29篇
  2013年   84篇
  2012年   34篇
  2011年   56篇
  2010年   29篇
  2009年   42篇
  2008年   43篇
  2007年   67篇
  2006年   35篇
  2005年   31篇
  2004年   28篇
  2003年   30篇
  2002年   32篇
  2001年   26篇
  2000年   15篇
  1999年   13篇
  1998年   11篇
  1997年   13篇
  1996年   12篇
  1995年   7篇
  1994年   14篇
  1993年   13篇
  1992年   7篇
  1991年   6篇
  1990年   10篇
  1989年   12篇
  1988年   6篇
  1987年   9篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1983年   5篇
  1982年   4篇
  1981年   12篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1975年   8篇
  1974年   5篇
  1972年   3篇
排序方式: 共有922条查询结果,搜索用时 46 毫秒
471.
Contamination of the indoor environment by tracked-in outdoor soil has the potential to pose a significant human health threat through exposure to hazardous soil constituents. The indoor distribution of (contaminated) soil following ingress is important when evaluating exposure risk. Here, the time evolution of size-resolved airborne particulate matter aerosolized as a result of mechanical (i.e., footfall or step-on) impacts on a floor surface with a layer of dry soil was investigated using laser particle counters. Suspended particle levels were recorded after step-on impacts that aerosolized soil particles at a single contact point by the action of a human tester who followed a pre-determined walking pattern. The experimental design presumed that the floor area immediately upon entrance indoors is the location of maximum deposition of outdoor soil transferred on footwear. The suspension of soil resulting from the first step-on floor contact and the subsequent resuspension of soil resulting from additional step-on events were quantified by various arrangements of four laser particle counters. Step-on impacts produced a transient increase in particle levels at various lateral distances and heights from the contact point. Also, with increasing distance and height from the step-on contact point, the level of suspended particles after successive step-on events decreased markedly. The results suggested that a lateral component of the dispersion process was more significant than a vertical one under these experimental conditions. A wall jet effect created by the impact of the footfalls on the floor surface was considered responsible for the apparent greater lateral dispersion of the soil particles.  相似文献   
472.
Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, along with a brief discussion of characterization methods and applications for addressing acid mine drainage. We then focus on two innovative, in situ methods for remediating sulfate-contaminated groundwater, the use of zero-valent iron and the addition of electron-donor substrates. The advantages and limitations associated with the methods are discussed, with examples of prior applications.  相似文献   
473.
Infectious diseases are increasingly recognized as an important force driving population dynamics, conservation biology, and natural selection in wildlife populations. Infectious agents have been implicated in the decline of small or endangered populations and may act to constrain population size, distribution, growth rates, or migration patterns. Further, diseases may provide selective pressures that shape the genetic diversity of populations or species. Thus, understanding disease dynamics and selective pressures from pathogens is crucial to understanding population processes, managing wildlife diseases, and conserving biological diversity. There is ample evidence that variation in the prion protein gene (PRNP) impacts host susceptibility to prion diseases. Still, little is known about how genetic differences might influence natural selection within wildlife populations. Here we link genetic variation with differential susceptibility of white-tailed deer to chronic wasting disease (CWD), with implications for fitness and disease-driven genetic selection. We developed a single nucleotide polymorphism (SNP) assay to efficiently genotype deer at the locus of interest (in the 96th codon of the PRNP gene). Then, using a Bayesian modeling approach, we found that the more susceptible genotype had over four times greater risk of CWD infection; and, once infected, deer with the resistant genotype survived 49% longer (8.25 more months). We used these epidemiological parameters in a multi-stage population matrix model to evaluate relative fitness based on genotype-specific population growth rates. The differences in disease infection and mortality rates allowed genetically resistant deer to achieve higher population growth and obtain a long-term fitness advantage, which translated into a selection coefficient of over 1% favoring the CWD-resistant genotype. This selective pressure suggests that the resistant allele could become dominant in the population within an evolutionarily short time frame. Our work provides a rare example of a quantifiable disease-driven selection process in a wildlife population, demonstrating the potential for infectious diseases to alter host populations. This will have direct bearing on the epidemiology, dynamics, and future trends in CWD transmission and spread. Understanding genotype-specific epidemiology will improve predictive models and inform management strategies for CWD-affected cervid populations.  相似文献   
474.
Streams of the agricultural Midwest, USA, export large quantities of nitrogen, which impairs downstream water quality, most notably in the Gulf of Mexico. The two-stage ditch is a novel restoration practice, in which floodplains are constructed alongside channelized ditches. During high flows, water flows across the floodplains, increasing benthic surface area and stream water residence time, as well as the potential for nitrogen removal via denitrification. To determine two-stage ditch nitrogen removal efficacy, we measured denitrification rates in the channel and on the floodplains of a two-stage ditch in north-central Indiana for one year before and two years after restoration. We found that instream rates were similar before and after the restoration, and they were influenced by surface water NO3- concentration and sediment organic matter content. Denitrification rates were lower on the constructed floodplains and were predicted by soil exchangeable NO3- concentration. Using storm flow simulations, we found that two-stage ditch restoration contributed significantly to NO3- removal during storm events, but because of the high NO3- loads at our study site, < 10% of the NO3- load was removed under all storm flow scenarios. The highest percentage of NO3- removal occurred at the lowest loads; therefore, the two-stage ditch's effectiveness at reducing downstream N loading will be maximized when the practice is coupled with efforts to reduce N inputs from adjacent fields.  相似文献   
475.
476.
The intertidal anemone Actinia tenebrosa is viviparous. An electrophoretic study of 3 polymorphic enzymes in Western Australian populations has confirmed genetic identity of adults and their brood young, indicating asexual reproduction. The population effects of this clonal reproduction are seen as linkage disequilibrium and departures from Hardy-Weinberg equilibrium within populations, and large differences between populations. The data also suggest occasional sexual reproduction, and the likelihood of a mixture of reproductive modes in this species.  相似文献   
477.
478.
Recent research indicates that cell phone use can distract drivers from safe vehicle operation. However, estimates of the prevalence of cell phone use while driving have been limited to daytime hours and low-speed roadways. This paper describes the results of a study to estimate rates of cell phone use and other distractions by examining approximately 40,000 high-quality digital photographs of vehicles and drivers on the New Jersey Turnpike. The photographs, which originally were collected as part of a separate study, were taken both during the day and during the night and at different locations across the span of the Turnpike. A radar gun linked to the camera recorded the speeds of vehicles as they passed. This provided us with the speeds of every vehicle photographed, and allowed us to determine population counts of vehicles. A panel of three trained coders examined each photograph and recorded the presence of cell phone use by the drivers or any other distracting behavior. Demographic information on the driver was obtained during previous examinations of the photographs for an unrelated study. A rating was considered reliable when two out of the three coders agreed. Population estimates (and confidence intervals) of cell phone use and other distractions were estimated by weighting the cases by the inverse probability of vehicle selection. Logistic regression was used to predict cell phone use from demographic and situational factors. The results indicated that the most frequent distraction was cell phone use: 1.5% of the drivers on the Turnpike were using cell phones compared to the 3 to 4% use rates reported in the National Occupant Protection Use Survey (NOPUS) surveys conducted during the daytime on lower speed roadways. The Turnpike survey indicated that cell phones were used less on weekends and at night, and when the driver was exceeding the speed limit or had a passenger in the car.  相似文献   
479.
Ammonia (NH3) volatilization is an undesirable mechanism for the removal of nitrogen (N) from wastewater treatment wetlands. To minimize the potential for NH3 volatilization, it is important to determine how wetland design affects NH3 volatilization. The objective of this research was to determine how the presence of a pond section affects NH3 volatilization from constructed wetlands treating wastewater from a confined swine operation. Wastewater was added at different N loads to six constructed wetlands of the marsh-pond-marsh design that were located in Greensboro, North Carolina, USA. A large enclosure was used to measure NH3 volatilization from the marsh and pond sections of each wetland in July and August of 2001. Ammonia volatilized from marsh and pond sections at rates ranging from 5 to 102 mg NH3-N m(-2) h(-1). Pond sections exhibited a significantly greater increase in the rate of NH3 volatilization (p < 0.0001) than did either marsh section as N load increased. At N loads greater than 15 kg ha(-1) d(-1), NH3 volatilization accounted for 23 to 36% of the N load. Furthermore, NH3 volatilization was the dominant (54-79%) N removal mechanism at N loads greater than 15 kg ha(-1) d(-1). Without the pond sections, NH3 volatilization would have been a minor contributor (less than 12%) to the N balance of these wetlands. To minimize NH3 volatilization, continuous marsh systems should be preferred over marsh-pond-marsh systems for the treatment of wastewater from confined animal operations.  相似文献   
480.
Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(0), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号