首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   1篇
  国内免费   3篇
安全科学   4篇
废物处理   39篇
环保管理   8篇
综合类   26篇
基础理论   41篇
污染及防治   66篇
评价与监测   7篇
社会与环境   9篇
灾害及防治   2篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2018年   6篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   12篇
  2012年   4篇
  2011年   14篇
  2010年   3篇
  2009年   16篇
  2008年   10篇
  2007年   15篇
  2006年   16篇
  2005年   12篇
  2004年   11篇
  2003年   16篇
  2002年   5篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1997年   6篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1989年   2篇
  1987年   1篇
  1984年   3篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
11.
Freshwater resources are increasingly scarce due to human activities, and the understanding of water quality variations at different spatial and temporal scales is necessary for adequate management. Here, we analyze the hypotheses that (1) the presence of a wastewater treatment plant (WWTP) and (2) a polluted tributary that drains downstream from the WWTP change the spatial patterns of physicochemical variables (pH, turbidity, dissolved oxygen, and electrical conductivity) and nutrient concentrations (reactive soluble phosphorus, total phosphorus, nitrogen series, total nitrogen, and total dissolved carbon) along a mid-order river in SE Brazil and that these effects depend on rainfall regime. Six study sites were sampled along almost 4 years to evaluate the impacts of human activities, including sites upstream (1–3) and downstream (5–6) from the WWTP. The impacts were observed presenting an increasing trend from the source (site 1) towards Água Quente stream (site 4, the polluted tributary), with signs of attenuation at site 5 (downstream from both WWTP and site 4) and the river mouth (site 6). Input of nutrients by rural and urban runoff was observed mainly at sites 2 and 3, respectively. At sites 4 and 5, the inputs of both untreated and treated wastewaters increased nutrient concentrations and changed physicochemical variables, with significant impacts to Monjolinho River. Seasonal variations in the measured values were also observed, in agreement with the pluviometric indexes of the region. Univariate analyses suggested no effect of the WWTP for most variables, with continued impacts at sites downstream, but non-parametric multivariate analysis indicated that these sites were recovering to chemical characteristics similar to upstream sites, apparently due to autodepuration. Therefore, multivariate methods that allow rigorous tests of multifactor hypotheses can greatly contribute to determine effects of both point and non-point sources in river systems, thus contributing to freshwater monitoring and management.  相似文献   
12.
It had been reported that iron and manganese oxides in steel slag enhanced the production of humic acid (HA) from low-molecular-weight compounds, such as phenolic acids, amino acids, and saccharides. In the present study, this function of steel slag was applied to the composting of raw organic wastes (ROWs). The degree of humification of HAs is an important factor in evaluating compost quality. Thus, HAs were extracted from the prepared composts and the humification parameters were determined, in terms of elemental compositions, acidic functional group contents, molecular weights, spectroscopic parameters from UV–vis absorption and 13C NMR spectra. The timing for adding steel slag affected the degree of humification of HAs in the composts. The weight average molecular weight of a HA when slag was added initially (29 kDa) was significantly higher than when slag was added after elevating the temperature of the compost pile (17–18 kDa). These results show that ROWs are decomposed to low-molecular-weight compounds after the pile temperature is elevated and the presence of slag enhances the polycondensation of these compounds to produce HAs with a higher degree of humification. Because the slag used in the present study contained several-tens ng g?1 to several μg g?1 of toxic elements (B, Cu, Cr, and Zn), leaching tests for these elements from the prepared composts were carried out. Levels for leaching boron from composts prepared by adding slag (0.2–0.4 mg L?1) were obviously higher than the corresponding levels without slag (0.05 mg L?1).  相似文献   
13.

Introduction

The accelerated biodegradation of 3-nitrophenol (3-NP) in the rhizosphere of giant duckweed (Spirodela polyrrhiza) was investigated.

Materials and methods

Biodegradation of 3-nitrophenol in the rhizosphere of a floating aquatic plant, S. polyrrhiza, was investigated by using three river water samples supplemented with 10?mg?l?1 of 3-NP. Isolation and enrichment culture of 3-NP-degrading bacteria were performed in basal salts medium containing 3-NP (50?mg?l?1). The isolated strains were physiologically and phylogenetically characterized by using an API20NE kit and 16S rRNA gene sequencing.

Results and discussion

Accelerated removal of 3-NP (100%) was observed in river water samples with S. polyrrhiza compared with their removal in plant-free river water. Also, 3-NP persisted in an autoclaved solution with aseptic plants, suggesting that the accelerated 3-NP removal resulted largely from degradation by bacteria inhabiting the plant rather than from adsorption and uptake by the plant. We successfully isolated six and four strains of 3-NP-degrading bacteria from the roots of S. polyrrhiza and plant-free river water, respectively. Phylogenetic analysis based on 16S rRNA gene divided the 3-NP-degrading bacteria into two taxonomic groups: the genera Pseudomonas and Cupriavidus. The strains belonging to the genus Cupriavidus were only isolated from the roots of duckweed. All strains isolated from the roots utilized 3-NP (0.5?mM) as a sole carbon and energy source, indicating that they could have contributed to the accelerated degradation of 3-NP in the rhizosphere of S. polyrrhiza.

Conclusions

The rhizoremediation using S. polyrrhiza and its rhizosphere bacteria can be an effective strategy for cleaning up the 3-NP-contaminated surface waters.  相似文献   
14.
Decisions in ecological risk management for chemical substances must be made based on incomplete information due to uncertainties. To protect the ecosystems from the adverse effect of chemicals, a precautionary approach is often taken. The precautionary approach, which is based on conservative assumptions about the risks of chemical substances, can be applied selecting management models and data. This approach can lead to an adequate margin of safety for ecosystems by reducing exposure to harmful substances, either by reducing the use of target chemicals or putting in place strict water quality criteria. However, the reduction of chemical use or effluent concentrations typically entails a financial burden. The cost effectiveness of the precautionary approach may be small. Hence, we need to develop a formulaic methodology in chemical risk management that can sufficiently protect ecosystems in a cost-effective way, even when we do not have sufficient information for chemical management. Information-gap decision theory can provide the formulaic methodology. Information-gap decision theory determines which action is the most robust to uncertainty by guaranteeing an acceptable outcome under the largest degree of uncertainty without requiring information about the extent of parameter uncertainty at the outset. In this paper, we illustrate the application of information-gap decision theory to derive a framework for setting effluent limits of pollutants for point sources under uncertainty. Our application incorporates a cost for reduction in pollutant emission and a cost to wildlife species affected by the pollutant. Our framework enables us to settle upon actions to deal with severe uncertainty in ecological risk management of chemicals.  相似文献   
15.
Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847 ng L−1 and 674-1383 ng L−1, respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs contamination in the water environment.  相似文献   
16.
The composting process of different organic wastes both in laboratory and on a large-scale was characterized using CIELAB color variables to evaluate compost stability for the better application in agriculture. The time courses of the CIELAB variables of composting materials were determined directly from the bottom of a glass petri dish filled with dried and ground samples using a Minolta Color Reader (CR-13) calibrated with clean empty petri dishes placed on a white tile. To compare the proposed method with conventional methods, the same materials were also evaluated using commonly used compost stability evaluation indices. Most of the CIELAB variables of a compost made from a mixture of green tea waste and rice bran reached a plateau after 84 days of composting and showed strong relationships with the commonly used compost stability evaluation indices. The time needed for CIELAB variables, especially the L*and b* values, to stabilize at large-scale composting plants of cattle litter, farmyard manure, kitchen garbage and bark compost, were more or less similar to the times of maturation evaluated by the respective compost producers. The CIELAB color variable offers a new, simple, rapid and inexpensive means of evaluating compost stability and its quality prior to agricultural use.  相似文献   
17.
This study aimed to identify distribution of metals and the influential factors on metal concentrations in incineration residues. Bottom ash and fly ash were sampled from 19 stoker and seven fluidized bed incinerators, which were selected to have a variety of furnace capacity, furnace temperature, and input waste. In the results, shredded bulky waste in input waste increased the concentration of some metals, such as Cd and Pb, and the effect was confirmed by analysis of shredded bulky waste. During MSW incineration, lithophilic metals such as Fe, Cu, Cr, and Al remained mainly in the bottom ash while Cd volatilized from the furnace and condensed to the fly ash. About two thirds of Pb and Zn was found in the bottom ash despite their high volatility. Finally, based on the results obtained in this study, the amount of metal in incineration residues of MSW was calculated and the loss of metal was estimated in terms of mass and money. A considerable amount of metal was found to be lost as waste material by landfilling of incineration residues.  相似文献   
18.
Removal of Cr(VI) from contaminated soil by electrokinetic remediation   总被引:2,自引:0,他引:2  
A new process for the removal of hexavalent chromium [Cr(VI)] contaminated soil is described. The process provides for an efficient removal of anionic chemicals from contaminated soils. Chromate anions were removed from the soil to the anodic reservoir by the moving force of electromigration. In this process, the chromate anions that accumulate in the anodic reservoir are simultaneously eliminated by using a column packed adsorbent. The adsorbent (immobilized tannin) used was chemically incorporated into cellulose. Cr(VI) was found to be adsorbed to this adsorbent efficiently. In the electrokinetic process, the pH of the aqueous solution in the anodic reservoir was decreased by the electrolysis of water. In the present study, the pH of the solution in the anodic reservoir is maintained at pH 6 by the addition of an aqueous alkaline solution during the electrokinetic process. The advantage of pH control is that it promotes the release of Cr(VI) from the soil by electromigration, thus permitting the maximum adsorption of Cr(VI) on the immobilized tannin. Simultaneous collection of Cr(VI) from the anodic reservoir leads to the protection from secondary contamination with Cr(VI).  相似文献   
19.
20.
In vehicle-pedestrian collisions, lower extremities of pedestrians are frequently injured by vehicle front structures. In this study, a finite element (FE) model of THUMS (total human model for safety) was modified in order to assess injuries to a pedestrian lower extremity. Dynamic impact responses of the knee joint of the FE model were validated on the basis of data from the literature. Since in real-world accidents, the vehicle bumper can impact the lower extremities in various situations, the relations between lower extremity injury risk and impact conditions, such as between impact location, angle, and impactor stiffness, were analyzed. The FE simulation demonstrated that the motion of the lower extremity may be classified into a contact effect of the impactor and an inertia effect from a thigh or leg. In the contact phase, the stress of the bone is high in the area contacted by the impactor, which can cause fracture. Thus, in this phase the impactor stiffness affects the fracture risk of bone. In the inertia phase, the behavior of the lower extremity depends on the impact locations and angles, and the knee ligament forces become high according to the lower extremity behavior. The force of the collateral ligament is high compared with other knee ligaments, due to knee valgus motions in vehicle-pedestrian collisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号