首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   1篇
  国内免费   1篇
安全科学   23篇
废物处理   4篇
环保管理   64篇
综合类   24篇
基础理论   45篇
环境理论   1篇
污染及防治   54篇
评价与监测   13篇
社会与环境   8篇
灾害及防治   4篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   9篇
  2015年   1篇
  2014年   6篇
  2013年   21篇
  2012年   6篇
  2011年   8篇
  2010年   13篇
  2009年   8篇
  2008年   13篇
  2007年   11篇
  2006年   18篇
  2005年   7篇
  2004年   6篇
  2003年   8篇
  2002年   10篇
  2001年   6篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   8篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1972年   1篇
  1971年   2篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
231.
Emergy (with an 'm') synthesis was used to assess the balance between nature and humanity and the equity among forest outcomes of a US Forest Service ecosystem management demonstration project on the Wine Spring Creek watershed, a high-elevation (1600 m), temperate forest located in the southern Appalachian mountains of North Carolina, USA. EM embraces a holistic perspective, accounting for the multiple temporal and spatial scales of forest processes and public interactions, to balance the ecological, economic, and social demands placed on land resources. Emergy synthesis is a modeling tool that allows the structure and function of forest ecosystems to be quantified in common units (solar emergy-joules, sej) for easy and meaningful comparison, determining 'system-value' for forcing factors, components, and processes based on the amount of resources required to develop and sustain them, whether they are money, material, energy, or information. The Environmental Loading Ratio (ELR), the units of solar emergy imported into the watershed via human control per unit of indigenous, natural solar emergy, was determined to be 0.42, indicating that the load on the natural environment was not ecologically damaging and that excess ecological capacity existed for increasing non-ecological activities (e.g. timbering, recreation) to achieve an ELR of 1.0 (perfect ecological-economic balance). Three forest outcomes selected to represent the three categories of desired sustainability (ecological, economic, and social) were evaluated in terms of their solar emergy flow to measure outcome equity. Direct economic contribution was an order of magnitude less (224 x 10(12)solar emergy-joules (sej) ha(-1)) than the ecological and social contributions, which were provided at annual rates of 3083 and 2102 x 10(12)sejha(-1), respectively. Emergy synthesis was demonstrated to holistically integrate and quantify the interconnections of a coupled nature-human system allowing the goals of ecological balance and outcome equity to be measured quantitatively.  相似文献   
232.
Mechanical friction and impacts is still today a main cause of ignition of explosive atmospheres (ATEX) in the industry and this trend seems to be stable in time. This situation certainly results from a significant gap of knowledge in the underlying mechanisms so that the parameters to play on are not precisely identified. In this programme of European dimensions, the process of degradation of the mechanical energy into heat during friction and impacts have been studied.

An extensive experimental programme is presented to this end. The mechanisms of dissipation of the mechanical energy into heat during friction has been studied with rubbing machines in which a slider equipped with temperature sensors rubs against a rotating wheel. For impacts, a new device has been developed using a special “air driven cannon” to propel a projectile accurately up to 50 m/s onto an inclined target. A very significant effort has been reserved to the investigation of the ignition mechanisms, not only for ATEX but also for dust accumulations.

Some “simple” modelling is proposed on purpose of practical applications. For frictional situations, a critical rubbing power is calculated without any limitations about any lower boundary concerning the rubbing velocity. For “impacts”, the relevant parameter for ignition is not the kinetic energy of the projectile but its velocity and the nature of the materials.  相似文献   

233.
The above article from Disasters, published online on 24 June 2019 in Wiley Online Library ( http://wileyonlinelibrary.com ) has been withdrawn by agreement among the authors, the Journal editors and John Wiley & Sons Inc. on behalf of ODI. The withdrawal has been agreed because this is a duplicate of an article that has been published in Disasters Volume 44 Issue 1.  相似文献   
234.
The reported size distribution of silver nanoparticles (AgNPs) is strongly affected by the underlying measurement method, agglomeration state, and dispersion conditions. A selection of AgNP materials with vendor-reported diameters ranging from 1 nm to 100 nm, various size distributions, and biocompatible capping agents including citrate, starch and polyvinylpyrrolidone were studied. AgNPs were diluted with either deionized water, moderately hard reconstituted water, or moderately hard reconstituted water containing natural organic matter. Rigorous physico-chemical characterization by consensus methods and protocols where available enables an understanding of how the underlying measurement method impacts the reported size measurements, which in turn provides a more complete understanding of the state (size, size distribution, agglomeration, etc.) of the AgNPs with respect to the dispersion conditions. An approach to developing routine screening is also presented.  相似文献   
235.
In biodiversity hotspots, there is often tension between human needs and conservation, exacerbated when protected areas prevent access to natural resources. Forest-dependent people may compensate for exclusion by managing unprotected forests or cultivating planted woodlots. Outside Bwindi Impenetrable National Park in Uganda, household wood product needs are high and population growth puts pressure on the environment. We investigated the role of privately and collectively managed woodlots in provisioning wood products and supporting local livelihoods. We found that households relied heavily on woodlots for daily needs and as resources during time of need. We also found that locally relevant social institutions, called stretcher groups, played a role in the management of woodlots, providing shared community resources. Privately and collectively owned woodlots support local livelihoods and wood product needs in the region. Long-term management of forests in Uganda should consider the value of woodlots and the mechanisms required to support them.  相似文献   
236.
The epidemiological implications with respect to climate change and public health (e.g., shifts in disease vectors) are beginning to be acknowledged. Less recognized however, are the potential links between climate, plant biology and public health. In addition to being affected by climate (e.g., temperature determines plant range), carbon dioxide (CO2) represents the raw material needed for photosynthesis and its rapid increase in the atmosphere is expected to stimulate plant growth. While there are a number of means by which plant biology intersects with human health (e.g., plant nutrition), one of the most widely recognized is aerobiology; specifically, the ability of plants to both produce pollen and to serve as a substrate for molds/fungi (e.g., sporulation). The current review represents an initial attempt to coalesce what is known regarding the likely impacts of climate/CO2 on plant pollen/fungal spores and associated allergic disease that are, or could be, specific to the Northeast United States. Although the current results indicate a number of potentially unfavorable effects, we wish to stress that the current data are based on a small number of experiments. Additional data are crucial to both reduce epidemiological uncertainty and to derive a robust set of mitigation / adaptation strategies.  相似文献   
237.
Proper grazing management practices can generate corresponding compensatory effects on plant community production, which may reduce inter-annual variability of productivity in some grassland ecosystems. However, it remains unclear how grazing influences plant community attributes and the variability of standing crop. We examined the effects of sheep grazing at four stocking rate treatments [control, 0 sheep ha?1 month?1; light (LG), 0.15 sheep ha?1 month?1; moderate (MG), 0.30 sheep ha?1 month?1; and heavy (HG), 0.45 sheep ha?1 month?1] on standing crop at the community level and partitioned by species and functional groups, in the desert steppe of Inner Mongolia, China. The treatments were arranged in a completely randomized block design over a 9-year period. Standing crop was measured every August from 2004 to 2012. Peak standing crop decreased (P < 0.05) with increasing stocking rate; peak standing crop in the HG treatment decreased 40 % compared to the control. May–July precipitation explained at least 76 % of the variation in peak standing crop. MG and HG treatments resulted in a decrease (P < 0.05) in shrubs, semi-shrubs, and perennials forbs, and an increase (P < 0.05) in perennial bunchgrasses compared to the control. The coefficients of variation at plant functional group and species level in the LG and MG treatments were lower (P < 0.05) than in the control and HG treatments. Peak standing crop variability of the control and HG community were greatest, which suggested that LG and MG have greater ecosystem stability.  相似文献   
238.
Soil properties are well known to affect vegetation, but the role of soil heterogeneity in the patterning of vegetation dynamics is poorly documented. We asked whether the location of an ecotone separating grass-dominated and sparsely vegetated areas reflected only historical variation in degradation or was related to variation in inherent soil properties. We then asked whether changes in the cover and spatial organization of vegetated and bare patches assessed using repeat aerial photography reflected self-organizing dynamics unrelated to soil variation or the stable patterning of soil variation. We found that the present-day ecotone was related to a shift from more weakly to more strongly developed soils. Parts of the ecotone were stable over a 60-year period, but shifts between bare and vegetated states, as well as persistently vegetated and bare states, occurred largely in small (<40 m2) patches throughout the study area. The probability that patches were presently vegetated or bare, as well as the probability that vegetation persisted and/or established over the 60-year period, was negatively related to surface calcium carbonate and positively related to subsurface clay content. Thus, only a fraction of the landscape was susceptible to vegetation change, and the sparsely vegetated area probably featured a higher frequency of susceptible soil patches. Patch dynamics and self-organizing processes can be constrained by subtle (and often unrecognized) soil heterogeneity.  相似文献   
239.
Following habitat fragmentation individual habitat patches may lose species over time as they pay off their "extinction debt." Species with relatively low rates of population extinction and colonization ("slow" species) may maintain extinction debts for particularly prolonged periods, but few data are available to test this prediction. We analyzed two unusually detailed data sets on forest plant distributions and land-use history from Lincolnshire, United Kingdom, and Vlaams-Brabant, Belgium, to test for an extinction debt in relation to species-specific extinction and colonization rates. Logistic regression models predicting the presence-absence of 36 plant species were first parameterized using data from Lincolnshire, where forest cover has been relatively low (approximately 5-8%) for the past 1000 years. Consistent with extinction debt theory, for relatively slow species (but not fast species) these models systematically underpredicted levels of patch occupancy in Vlaams-Brabant, where forest cover was reduced from approximately 25% to <10% between 1775 and 1900 (it is presently 6.5%). As a consequence, the ability of the Lincolnshire models to predict patch occupancy in Vlaams-Brabant was worse for slow than for fast species. Thus, more than a century after forest fragmentation reached its current level an extinction debt persists for species with low rates of population turnover.  相似文献   
240.
Empirical records provide incontestable evidence of global changes: foremost among these changes is the rising concentration of CO(2) in the earth's atmosphere. Plant growth is nearly always stimulated by elevation of CO(2). Photosynthesis increases, more plant biomass accumulates per unit of water consumed, and economic yield is enhanced. The profitable use of supplemental CO(2) over years of greenhouse practice points to the value of CO(2) for plant production. Plant responses to CO(2) are known to interact with other environmental factors, e.g. light, temperature, soil water, and humidity. Important stresses including drought, temperature, salinity, and air pollution have been shown to be ameliorated when CO(2) levels are elevated. In the agricultural context, the growing season has been shortened for some crops with the application of more CO(2); less water use has generally, but not always, been observed and is under further study; experimental studies have shown that economic yield for most crops increases by about 33% for a doubling of ambient CO(2) concentration. However, there are some reports of negligible or negative effects. Plant species respond differently to CO(2) enrichment, therefore, clearly competitive shifts within natural communities could occur. Though of less importance in managed agro-ecosystems, competition between crops and weeds could also be altered. Tissue composition can vary as CO(2) increases (e.g. higher C: N ratios) leading to changes in herbivory, but tests of crop products (consumed by man) from elevated CO(2) experiments have generally not revealed significant differences in their quality. However, any CO(2)-induced change in plant chemical or structural make-up could lead to alterations in the plant's interaction with any number of environmental factors-physicochemical or biological. Host-pathogen relationships, defense against physical stressors, and the capacity to overcome resource shortages could be impacted by rises in CO(2). Root biomass is known to increase but, with few exceptions, detailed studies of root growth and function are lacking. Potential enhancement of root growth could translate into greater rhizodeposition, which, in turn, could lead to shifts in the rhizosphere itself. Some of the direct effects of CO(2) on vegetation have been reasonably well-studied, but for others work has been inadequate. Among these neglected areas are plant roots and the rhizosphere. Therefore, experiments on root and rhizosphere response in plants grown in CO(2)-enriched atmospheres will be reviewed and, where possible, collectively integrated. To this will be added data which have recently been collected by us. Having looked at the available data base, we will offer a series of hypotheses which we consider as priority targets for future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号