首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3989篇
  免费   5篇
  国内免费   94篇
安全科学   79篇
废物处理   171篇
环保管理   414篇
综合类   355篇
基础理论   241篇
污染及防治   2002篇
评价与监测   505篇
社会与环境   273篇
灾害及防治   48篇
  2024年   4篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2020年   4篇
  2019年   7篇
  2018年   2篇
  2017年   8篇
  2016年   6篇
  2015年   8篇
  2014年   4篇
  2013年   9篇
  2012年   450篇
  2011年   556篇
  2010年   56篇
  2009年   115篇
  2008年   490篇
  2007年   430篇
  2006年   384篇
  2005年   303篇
  2004年   229篇
  2003年   215篇
  2002年   191篇
  2001年   136篇
  2000年   101篇
  1999年   48篇
  1998年   11篇
  1997年   16篇
  1996年   17篇
  1995年   23篇
  1994年   10篇
  1993年   14篇
  1992年   17篇
  1991年   19篇
  1990年   18篇
  1989年   14篇
  1988年   22篇
  1987年   25篇
  1986年   10篇
  1985年   21篇
  1984年   15篇
  1983年   12篇
  1982年   12篇
  1981年   13篇
  1980年   12篇
  1979年   10篇
  1975年   2篇
  1974年   5篇
  1973年   2篇
  1949年   1篇
排序方式: 共有4088条查询结果,搜索用时 484 毫秒
651.
A glasshouse pot experiment was conducted to investigate Cd concentrations in the aboveground parts of two consecutive crops of rice and Cd availability in three different soils (loam, silt loam, and sandy loam) after application of pig manure with added Cd. Soil pH tended to increase with increasing application rate of pig manure from 1 to 3% (w/w, oven dry basis). Soil diethylene triamine pentaacetic acid (DTPA) extractable Cd showed a clear positive correlation with soil total Cd content and increased with increasing Cd amendment of the manure but showed no difference between the two manure application rates. Cd concentrations in the grain, husk, and straw were significantly and positively correlated with soil DTPA-extractable Cd (p < 0.001). Within each level of manure Cd, the higher rate (3%) of manure produced lower Cd concentrations in the grain, husk, and straw on all three soils than did the lower rate (1%) after the first crop, but this no longer occurred after the growth of the second crop. Grain Cd concentrations exceeded the Chinese National Food Quality Standard (0.2 mg kg(-1)) most often on the loam, with intermediate frequency on the silt loam, and least often on the sandy loam, the soil with the highest pH and lowest organic carbon content and cation exchange capacity.  相似文献   
652.
Challenges to interdisciplinary research in ecosystem-based management   总被引:1,自引:0,他引:1  
Despite its necessity, integration of natural and social sciences to inform conservation efforts has been difficult. We examined the views of 63 scientists and practitioners involved in marine management in Mexico's Gulf of California, the central California coast, and the western Pacific on the challenges associated with integrating social science into research efforts that support ecosystem-based management (EBM) in marine systems. We used a semistructured interview format. Questions focused on how EBM was developed for these sites and how contextual factors affected its development and outcomes. Many of the traditional challenges linked with interdisciplinary research were present in the EBM projects we studied. However, a number of contextual elements affected how mandates to include social science were interpreted and implemented as well as how easily challenges could be addressed. For example, a common challenge is that conservation organizations are often dominated by natural scientists, but for some projects it was easier to address this imbalance than for others. We also found that the management and institutional histories that came before EBM in specific cases were important features of local context. Because challenges differed among cases, we believe resolving challenges to interdisciplinary research should be context specific.  相似文献   
653.
Multi-scale resource selection modeling is used to identify factors that limit species distributions across scales of space and time. This multi-scale nature of habitat suitability complicates the translation of inferences to single, spatial depictions of habitat required for conservation of species. We estimated resource selection functions (RSFs) across three scales for a threatened ungulate, woodland caribou (Rangifer tarandus caribou), with two objectives: (1) to infer the relative effects of two forms of anthropogenic disturbance (forestry and linear features) on woodland caribou distributions at multiple scales and (2) to estimate scale-integrated resource selection functions (SRSFs) that synthesize results across scales for management-oriented habitat suitability mapping. We found a previously undocumented scale-specific switch in woodland caribou response to two forms of anthropogenic disturbance. Caribou avoided forestry cut-blocks at broad scales according to first- and second-order RSFs and avoided linear features at fine scales according to third-order RSFs, corroborating predictions developed according to predator-mediated effects of each disturbance type. Additionally, a single SRSF validated as well as each of three single-scale RSFs when estimating habitat suitability across three different spatial scales of prediction. We demonstrate that a single SRSF can be applied to predict relative habitat suitability at both local and landscape scales in support of critical habitat identification and species recovery.  相似文献   
654.
Tan J  Pu Z  Ryberg WA  Jiang L 《Ecology》2012,93(5):1164-1172
Species immigration history can structure ecological communities through priority effects, which are often mediated by competition. As competition tends to be stronger between species with more similar niches, we hypothesize that species phylogenetic relatedness, under niche conservatism, may be a reasonable surrogate of niche similarity between species, and thus influence the strength of priority effects. We tested this hypothesis using a laboratory microcosm experiment in which we established bacterial species pools with different levels of phylogenetic relatedness and manipulated the immigration history of species from each pool into microcosms. Our results showed that strong priority effects, and hence multiple community states, only emerged for the species pool with the greatest phylogenetic relatedness. Community assembly also resulted in a significant positive relationship between bacterial phylogenetic diversity and ecosystem functions. Interestingly, these results emerged despite a lack of phylogenetic conservatism for most of the bacterial functional traits considered. Our results highlight the utility of phylogenetic information for understanding the structure and functioning of ecological communities, even when phylogenetically conserved functional traits are not identified or measured.  相似文献   
655.
Models of two-patch predator-prey metacommunities are used to explore how the global predator population changes in response to additional mortality in one of the patches. This could describe the dynamics of a predator in an environment that includes a refuge area where that predator is protected and a spatially distinct ("risky") area where it is harvested. The predator's movement is based on its perceived fitness in the two patches, but the risk from the additional mortality is potentially undetectable; this often occurs when the mortality is from human harvesting or from a novel type of top predator. Increases in undetected mortality in the risky area can produce an abrupt collapse of either the refuge population or of the entire predator population when the mortality rate exceeds a threshold level. This is due to the attraction of the risky patch, which has abundant prey due to its high predator mortality. Extinction of the refuge predator population does not occur when the refuge patch has a higher maximum per capita predator growth rate than the exploited patch because the refuge is then more attractive when the predator is rare. The possibility of abrupt extinction of one or both patches from high densities in response to a small increase in harvest is often associated with alternative states. In such cases, large reductions in mortality may be needed to avoid extinction in a collapsing predator population, or to reestablish an extinct population. Our analysis provides a potential explanation for sudden collapses of harvested populations, and it argues for more consideration of adaptive movement in designing protected areas.  相似文献   
656.
The CO2 concentration in Earth's atmosphere may double during this century. Plant responses to such an increase depend strongly on their nitrogen status, but the reasons have been uncertain. Here, we assessed shoot nitrate assimilation into amino acids via the shift in shoot CO2 and O2 fluxes when plants received nitrate instead of ammonium as a nitrogen source (deltaAQ). Shoot nitrate assimilation became negligible with increasing CO2 in a taxonomically diverse group of eight C3 plant species, was relatively insensitive to CO2 in three C4 species, and showed an intermediate sensitivity in two C3-C4 intermediate species. We then examined the influence of CO2 level and ammonium vs. nitrate nutrition on growth, assessed in terms of changes in fresh mass, of several C3 species and a Crassulacean acid metabolism (CAM) species. Elevated CO2 (720 micromol CO2/mol of all gases present) stimulated growth or had no effect in the five C3 species tested when they received ammonium as a nitrogen source but inhibited growth or had no effect if they received nitrate. Under nitrate, two C3 species grew faster at sub-ambient (approximately 310 micromol/mol) than elevated CO2. A CAM species grew faster at ambient than elevated or sub-ambient CO2 under either ammonium or nitrate nutrition. This study establishes that CO2 enrichment inhibits shoot nitrate assimilation in a wide variety of C3 plants and that this phenomenon can have a profound effect on their growth. This indicates that shoot nitrate assimilation provides an important contribution to the nitrate assimilation of an entire C3 plant. Thus, rising CO2 and its effects on shoot nitrate assimilation may influence the distribution of C3 plant species.  相似文献   
657.
Brooks CP  Ervin GN  Varone L  Logarzo GA 《Ecology》2012,93(2):402-410
Environmental niche models (ENMs) have gained enormous popularity as tools to investigate potential changes in species distributions resulting from climate change and species introductions. Despite recognition that species interactions can influence the dynamics of invasion spread, most implementations of ENMs focus on abiotic factors as the sole predictors of potential range limits. Implicit in this approach is the assumption that biotic interactions are relatively unimportant, either because of scaling issues, or because fundamental and realized niches are equivalent in a species' native range. When species are introduced into exotic landscapes, changes in biotic interactions relative to the native range can lead to occupation of different regions of niche space and apparent shifts in physiological tolerances. We use an escaped biological control organism, Cactoblastis cactorum (Berg.), to assess the role of the environmental envelope as compared with patterns of host-herbivore associations based on collections made in the native range. Because all nonnative populations are derived from a single C. cactorum ecotype, we hypothesize that biotic interactions associated with this ecotype are driving the species' invasion dynamics. Environmental niche models constructed from known native populations perform poorly in predicting nonnative distributions of this species, except where there is an overlap in niche space. In contrast, genetic isolation in the native range is concordant with the observed pattern of host use, and strong host association has been noted in nonnative landscapes. Our results support the hypothesis that the apparent shift in niche space from the native to the exotic ranges results from a shift in biotic interactions, and demonstrate the importance of considering biotic interactions in assessing the risk of future spread for species whose native range is highly constrained by biotic interactions.  相似文献   
658.
Zhang Y  Huang G  Wang W  Chen L  Lin G 《Ecology》2012,93(3):588-597
Cordgrass (Spartina alterniflora) was introduced to China in 1979 from the United States for reducing coastal erosion. It grows vigorously in China and has spread over much of the Chinese coast, from Leizhou Peninsula to Liaoning, a range of more than 19 degrees of latitude. On the southern coast of China, S. alterniflora has invaded mangrove-dominated habitats during the last two decades, but little is known about interactions between native mangroves and invasive S. alterniflora. We studied the distribution and competitive interactions between native mangroves and S. alterniflora in the Zhangjiang Estuary at four tidal sites along a salinity gradient: oligohaline upstream, mesohaline, polyhaline, and euhaline downstream. S. alterniflora occurred at all four sites, and several mangrove species occurred at all but the downstream euhaline site. S. alterniflora has invaded the estuary widely and has spread to the lower tidal margins of mangroves. It has not invaded mangrove areas with a closed canopy but has established in the mangrove zone where the canopy was opened by human disturbance. Ramets of S. alterniflora transplanted into the understory of mangrove stands with closed canopies died within 10 weeks, but 37.5% survived and grew well on open mud flats. S. alterniflora had virtually no competitive effect on mangrove seedlings planted at the upstream oligohaline site. However, S. alterniflora competitively reduced biomass of mangrove seedlings to 33% over a period of 14 weeks at the mesohaline and polyhaline sites where human disturbance has opened the mangrove canopy. In contrast, S. alterniflora marginally facilitated growth and survival of experimental seedlings at the downstream euhaline site. In China, mangroves occur along the coastline south of Whenzhou, but they have been severely disturbed and removed widely, mainly by mariculture activities. Natural vegetation patterns and our experimental results suggest that, without intervention, S. alterniflora could gradually replace these mangroves in mid-salinity regions of Chinese estuaries.  相似文献   
659.
Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.  相似文献   
660.
Habitat-specific cues play an important role in orientation for animals that move through a mosaic of habitats. Environmental cues can be imprinted upon during early life stages to guide later return to adult habitats, yet many species must orient toward suitable habitats without previous experience of the habitat. It is hypothesized that multiple sensory cues may enable animals to differentiate between habitats in a sequential order relevant to the spatial scales over which the different types of information are conveyed, but previous research, especially for marine organisms, has mainly focused on the use of single cues in isolation. In this study, we investigated novel habitat selection through the use of three different sensory modalities (hearing, vision, and olfaction). Our model species, the French grunt, Haemulon flavolineatum, is a mangrove/seagrass-associated reef fish species that makes several habitat transitions during early life. Using several in situ and ex situ experiments, we tested the response of fish toward auditory, olfactory, and visual cues from four different habitats (seagrass beds, mangroves, rubble, and coral reef). We identified receptivity to multiple sensory cues during the same life phase, and found that different cues induced different reactions toward the same habitat. For example, early-juvenile fish only responded to sound from coral reefs and to chemical cues from mangroves/seagrass beds, while visual cues of conspecifics overruled olfactory cues from mangrove/seagrass water. Mapping these preferences to the ecology of ontogenetic movements, our results suggest sequential cue use would indeed aid successful orientation to novel key habitats in early life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号