首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   5篇
  国内免费   4篇
安全科学   12篇
废物处理   14篇
环保管理   10篇
综合类   75篇
基础理论   53篇
污染及防治   54篇
评价与监测   15篇
社会与环境   5篇
灾害及防治   1篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   11篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   11篇
  2015年   16篇
  2014年   11篇
  2013年   16篇
  2012年   16篇
  2011年   13篇
  2010年   12篇
  2009年   9篇
  2008年   12篇
  2007年   19篇
  2006年   13篇
  2005年   9篇
  2004年   7篇
  2003年   11篇
  2002年   7篇
  2001年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1978年   1篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
231.
The degradation of bitertanol by ozone treatment is investigated. Solutions of bitertanol (8.4 μg mL?1) were prepared either by dissolution of the standard or by dilution of Gaucho Blé seed loading solution and then ozonated under different conditions. Evolution of the concentrations of bitertanol and its ozonation by-products in both solutions was monitored by HPLC–UV as a function of the treatment time for a concentration of 100 g m?3 of ozone in the inlet gas. Bitertanol degradation was found to follow a pseudo-first order reaction in both cases. However, the rate of the reaction in diluted seed loading solution was much lower (0.19 vs. 0.27 min?1 in standard solution) and was close to the reaction rate observed in the presence of a radical scavenger, tert-butanol (0.11 min?1). Thus, it may be suggested that additives present in the seed loading solution may play the role of radical scavengers. Study of ozone concentration in the inlet gas (from 25 to 100 g m?3) showed that ozone degradation is also a first-order reaction with respect to ozone. Four ozonation by-products were highlighted, collected and identified by HPLC coupled with an ion trap mass spectrometer using positive electrospray ionization mode. A degradation pathway of bitertanol was finally proposed.  相似文献   
232.
Dissolved and particulate Ag concentrations (AgD and AgP, respectively) were measured in surface water and suspended particulate matter (SPM) along the salinity gradient of the Gironde Estuary, South West France, during three cruises (2008–2009) covering contrasting hydrological conditions, i.e. two cruises during intermediate and one during high freshwater discharge (~740 and ~2,300 m3/s). Silver distribution reflected non-conservative behaviour with 60–70 % of AgP in freshwater particles being desorbed by chlorocomplexation. The amount of AgP desorbed was similar to the so-called reactive, potentially bioavailable AgP fraction (60?±?4 %) extracted from river SPM by 1 M HCl. Both AgP (0.22?±?0.05 mg/kg) and AgP/ThP (0.025–0.028) in the residual fraction of fluvial and estuarine SPM were similar to those in SPM from the estuary mouth and in coastal sediments from the shelf off the Gironde Estuary, indicating that chlorocomplexation desorbs the reactive AgP. The data show that desorption of reactive AgP mainly occurs inside the estuary during low and intermediate discharge, whereas expulsion of partially AgP-depleted SPM (AgP/ThP ~0.040) during the flood implies ongoing desorption in the coastal ocean, e.g. in the nearby oyster production areas (Marennes-Oléron Bay). The highest AgD levels (6–8 ng/L) occurred in the mid-salinity range (15–20) of the Gironde Estuary and were decoupled from freshwater discharge. In the maximum turbidity zone, AgD were at minimum, showing that high SPM concentrations (a) induce AgD adsorption in estuarine freshwater and (b) counterbalance AgP desorption in the low salinity range (1–3). Accordingly, Ag behaviour in turbid estuaries appears to be controlled by the balance between salinity and SPM levels. The first estimates of daily AgD net fluxes for the Gironde Estuary (Boyle’s method) showed relatively stable theoretical AgD at zero salinity (Ag D 0 = 25–30 ng/L) for the contrasting hydrological situations. Accordingly, AgD net fluxes were very similar for the situations with intermediate discharge (1.7 and 1.6 g/day) and clearly higher during the flood (5.0 g/day) despite incomplete desorption. Applying Ag D 0 to the annual freshwater inputs provided an annual net AgD flux (0.64–0.89 t/year in 2008 and 0.56–0.77 t/year in 2009) that was 12–50 times greater than the AgD gross flux. This estimate was consistent with net AgD flux estimates obtained from gross AgP flux considering 60 % desorption in the estuarine salinity gradient.  相似文献   
233.
Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.  相似文献   
234.
The Gironde fluvial estuarine system is impacted by historic metal pollution (e.g. Cd, Zn, Hg) and oysters (Crassostrea gigas) from the estuary mouth have shown extremely high Cd concentrations for decades. Based on recent work (Chiffoleau et al., 2005) revealing anomalously high Ag concentrations (up to 65 mg kg−1; dry weight) in Gironde oysters, we compared long-term (∼1955-2001) records of Ag and Cd concentrations in reservoir sediment with the respective concentrations in oysters collected between 1979 and 2010 to identify the origin and historical trend of the recently discovered Ag anomaly. Sediment cores from two reservoirs upstream and downstream from the main metal pollution source provided information on (i) geochemical background (upstream; Ag: ∼0.3 mg kg−1; Cd: ∼0.8 mg kg−1) and (ii) historical trends in Ag and Cd pollution. The results showed parallel concentration-depth profiles of Ag and Cd supporting a common source and transport. Decreasing concentrations since 1986 (Cd: from 300 to 11 mg kg−1; Ag: from 6.7 to 0.43 mg kg−1) reflected the termination of Zn ore treatment in the Decazeville basin followed by remediation actions. Accordingly, Cd concentrations in oysters decreased after 1988 (from 109 to 26 mg kg−1, dry weight (dw)), while Ag bioaccumulation increased from 38 up to 116 mg kg−1, dw after 1993. Based on the Cd/Ag ratio (Cd/Ag ∼ 2) in oysters sampled before the termination of zinc ore treatment (1981-1985) and assuming that nearly all Cd in oysters originated from the metal point source, we estimated the respective contribution of Ag from this source to Ag concentrations in oysters. The evolution over the past 30 years clearly suggested that the recent, unexplained Ag concentrations in oysters are due to increasing contributions (>70% after 1999) by other sources, such as photography, electronics and emerging Ag applications/materials.  相似文献   
235.
Conservation of the marine environment mainly focuses on threatened elements and more precisely on vulnerable and endangered species like birds and mammals. When dealing with the conservation of marine habitats, the scientific community is mainly interested in hot spots of diversity, like seagrass beds in Europe, or hot spots of endemism, like coral reefs in tropical areas. Nevertheless, using the example of a common and widespread marine invertebrate, the sandmason worm (Lanice conchilega, Polychaeta, Terebellidae), we show that vulnerability and rarity are not the only criteria to take into account in order to select the best natural element for conservation. This species can form dense beds that increase biodiversity, are attractive feeding grounds for birds and fishes, and have a high socioeconomic value. In consequence, they have a high functional value that should be considered as an important conservation stake. Through the example of the Chausey archipelago and the Bay of the Mont Saint-Michel (France), we propose a synthetic interdisciplinary approach to evaluate the conservation needs of these beds. The issue is even more pressing when one considers that these natural elements and many similar ones still do not benefit from any legal protection in Europe despite their high heritage value.  相似文献   
236.
The paper aims at simulating the closed-system dynamic leaching of a cement-based monolith containing lead with the numerical reactive transport code HYTEC in a 3D-cylindrical geometry. The model considers, simultaneously, the chemical evolution of pore water, the progression of mineralogical alteration fronts, and the concomitant release of elements from the S/S waste. In good agreement with the experiment, element releases were found to be mainly controlled by either diffusion (Na, K, and, to a lesser extent, Cl), by surface dissolution (Ca, Si) or by a mixed evolution (Pb, SO4). All of the calculated mineralogical transformations take place in a thin layer beyond the monolith surface. Consequently, modelling of Ca, Si and SO4 releases was quite sensitive to the node size of the simulation grid and was improved by taking into account the increase of porosity and effective diffusion coefficient due to mineral dissolution in the leached layer. In agreement with experimental results, the deepest front corresponds under closed-system conditions to portlandite dissolution and calcium silicate hydrates CSH 1.8 transformation into CSH of lower Ca/Si ratio. A second, distinct and intermediate, front is made by ettringite dissolution. The network of CSH is globally preserved in the leached layer, complete dissolution occurring over a very small thickness only. Finally, hydrotalcite precipitation in the leached layer is expected by modelling due to pH drop.  相似文献   
237.
Nitrified leachate recirculation has been proposed as a promising strategy for sustainable landfill management. In four test reactors, nitrate or nitrite was added (250 mg N-NO(x)(-)L(-1)) during municipal solid waste biodegradation. Nitrogen-oxides reduction reactions were monitored. Denitrification was the main nitrogen reducing reaction observed. On one hand, during the acidogenic waste degradation phase, as high amounts of volatile fatty acids (VFA) were present, nitrogen-oxides reductions were interpreted as heterotrophic denitrifications. On the other hand, denitrification reactions occurring during the late methanogenic phase were accompanied by sulphate productions and, as VFA were not detected, it was probably an autotrophic reaction. Denitrification inhibition was observed once. Ammonium concentration increased suggesting the occurrence of a dissimilatory nitrate reduction to ammonium (DNRA). Statistical treatment of analytical data revealed that only H(2)S concentration had a significant negative effect on N(2) production in our system. NO production was observed once when nitrite was injected during the acidogenic phase resulting in a total waste degradation inhibition. These results indicate that the consequences of nitrified leachate recirculation in full-scale landfills need to be carefully examined especially during the acidogenic phase or in the presence of waste containing high quantities of sulphur.  相似文献   
238.
Relationships between biochemical and physiological biomarkers (acetylcholinesterase [AChE], catalase, and glutathione S-transferase [GST] activities, thiobarbituric acid reactive substances, glycogen, lipids and proteins) and accumulated concentrations of contaminants (polychlorinated biphenyls [PCBs], polycyclic aromatic hydrocarbons and metals) were examined in the keystone species Nereis diversicolor. The chemical analyses of worms and sediments allowed the designation of the Seine estuary and the Authie estuary as a polluted and relatively clean site respectively. Worms from the Seine estuary exhibited higher GST and lower AChE activities. Generally, larger worms had higher concentrations of energy reserves. Principal component analyses clearly highlighted intersite differences: in the first plan, GST activities and chemical concentrations were inversely related to concentrations of energy reserves; in the second one, PCB concentrations and AChE activity were inversely related. Depleted levels of energy reserves could be a consequence of combating toxicants and might predict effects at higher levels of biological organization. The use of GST and AChE activities and energy reserve concentrations as biomarkers is validated in the field in this keystone species.  相似文献   
239.
Environmental Modeling & Assessment - We designed a survey that aims at estimating individual willingness-to-pay to reduce noise and air pollution arising from transportation activity near the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号