In this study, ambient air samples from different atmospheric environments were examined for both PBDE and PCDD/F characteristics to verify that combustion is a significant PBDE emission source. The mean ± SD atmospheric PBDE concentrations were 165 ± 65.0 pg Nm−3 in the heavy steel complex area and 93.9 ± 24.5 pg Nm−3 in the metals complex areas, 4.7 and 2.7 times higher than that (35.3 ± 15.5 pg Nm−3) in the urban areas, respectively. The statistically high correlation (r = 0.871, p < 0.001) found between the atmospheric PBDE and PCDD/F concentrations reveals that the combustion sources are the most likely PBDE emission sources. Correspondence analysis shows the atmospheric PBDEs of the heavy steel and metals complex areas are associated with BDE-209, -203, -207, -208, indicative of combustion source contributions. Furthermore, the PBDEs in urban ambient air experience the influence of the evaporative releases of the commercial penta- and octa-BDE mixtures, as well as combustion source emissions. By comparing the PBDE homologues of indoor air, urban ambient air, and stack flue gases of combustion sources, we found that the lighter brominated PBDEs in urban ambient air were contributed by the indoor air, while their highly brominated ones were from the combustion sources, such as vehicles. The developed source identification measure can be used to clarify possible PBDE sources not only for Taiwanese atmosphere but also for other environmental media in other countries associated with various emission sources in the future. 相似文献
A rapid and simple method is described for the quantitative determination of polycyclic aromatic hydrocarbons in aqueous environmental samples. A microscale on-line supercritical fluid extraction-supercritical fluid chromatography system using carbon dioxide is employed. The extract is analysed using capillary supercritical fluid chromatography with UV detection. Detection was carried out at 254 nm. An extraction efficiency of as high as 91% was obtained for the PAHs. 相似文献
The applications of Freon-22 (R22) as a mobile phase and as a modifier in supercritical fluid chromatography were investigated. For the purpose of this investigation, the separation of eleven phenols listed by the United States Environmental Protection Agency as priority pollutants was studied. It was found that the use of neat R22 greatly reduced the retention times of the phenols compared with the use of neat carbon dioxide as mobile phase. Satisfactory separation of all the eleven phenols could be achieved using 5% R22 as modifier in carbon dioxide. The promising results obtained in this preliminary investigation indicate the potential for the use of R22 in supercritical fluid separation processes. 相似文献
Serum vitellogenin (VTG) contents of wild goldfish (Carassius auratus) were investigated as a sensitive biomarker for artificial estrogenic compounds in aquatic environments. Goldfish was sampled from a pristine area, a river situated 5 km downstream from a sewage treatment works (STW), and also from the Young-San River in Korea. The female yolk precursor protein VTG was not detected when gonadosomatic index (GSI) was less than 0.85%, while VTG levels of >10 microg/ml were found in males whose GSI was less than 1.53%. In male goldfish sampled from STW and the Young-San River, the higher VTG corresponded to lower GSI. This study suggested a trend that gonad development was connected to VTG levels in both sexes, and the application of GSI and histological analysis provide an attractive possibility that it could be included in the panel of markers used for estrogenic activity investigation of aquatic environments. 相似文献
Many factors in the reliability analysis of planning the regional rainwater utilization tank capacity need to be considered. Based on the historical daily rainfall data, the following four analyzing procedures will be conducted: the regional daily rainfall frequency, the amount of runoff, the water continuity, and the reliability. Thereafter, the suggested designed storage capacity can be obtained according to the conditions with the demand and supply reliability. By using the output data, two different types of artificial neural network models are used to build up small area rainfall–runoff supply systems for the simulation of reliability and the prediction model. They are also used for the testing of stability and learning speed assessment. Based on the result of this research, the radial basis function neural network (RBFNN) model, using the Gaussian function that has a similar trend as the nature as basic function, has better stability than using the back-propagation neural network (BPNN) model. Despite the fact that RBFNN was more reliable than BPNN, it still made a conservative estimate for the actual monitoring data. The error rate of RBFNN was still higher than the correction of BPNN 4-3-1-1. This should have significant benefit in the future application of the instantaneous prediction or the development of related intelligent instantaneous control equipment. 相似文献
Biochar derived from food waste was modified with Fe to enhance its adsorption capacity for As(III), which is the most toxic form of As. The synthesis of Fe-impregnated food waste biochar (Fe-FWB) was optimized using response surface methodology (RSM), and the pyrolysis time (1.0, 2.5, and 4.0 h), temperature (300, 450, and 600 °C), and Fe concentration (0.1, 0.3, and 0.5 M) were set as independent variables. The pyrolysis temperature and Fe concentration significantly influenced the As(III) removal, but the effect of pyrolysis time was insignificant. The optimum conditions for the synthesis of Fe-FWB were 1 h and 300 °C with a 0.42-M Fe concentration. Both physical and chemical properties of the optimized Fe-FWB were studied. They were also used for kinetic, equilibrium, thermodynamic, pH, and competing anion studies. Kinetic adsorption experiments demonstrated that the pseudo-second-order model had a superior fit for As(III) adsorption than the pseudo-first-order model. The maximum adsorption capacity derived from the Langmuir model was 119.5 mg/g, which surpassed that of other adsorbents published in the literature. Maximum As(III) adsorption occurred at an elevated pH in the range from 3 to 11 owing to the presence of As(III) as H2AsO3? above a pH of 9.2. A slight reduction in As(III) adsorption was observed in the existence of bicarbonate, hydrogen phosphate, nitrate, and sulfate even at a high concentration of 10 mM. This study demonstrates that aqueous solutions can be treated using Fe-FWB, which is an affordable and readily available resource for As(III) removal.
Satellite-retrieved data on aerosol optical depth (AOD) and Ångström exponent (AE) using a moderate resolution imaging spectrometer (MODIS) were used to analyze large-scale distributions of atmospheric aerosols in East Asia. AOD was relatively high in March (0.44?±?0.25) and low in September (0.24?±?0.21) in the East Asian region in 2009. Sandstorms originating from the deserts and dry areas in northern China and Mongolia were transported on a massive scale during the springtime, thus contributing to the high AOD in East Asia. However, whereas PM10 with diameters ≤10 μm was the highest in February at Anmyon, Cheongwon, and Ulleung, located leeward about halfway through the Korean Peninsula, AOD rose to its highest in May. The growth of hygroscopic aerosols attendant on increases in relative humidity prior to the Asian monsoon season contributed to a high AOD level in May. AE typically appears at high levels (1.30?±?0.37) in August due to anthropogenic aerosols originating from the industrial areas in eastern China, while AOD stays low in summer due to the removal process caused by rainfall. The linear correlation coefficients of the MODIS AOD and ground-based mass concentrations of PM10 at Anmyon, Cheongwon, and Ulleung were measured at 0.4~0.6. Four cases (6 days) of mineral dustfall from sandstorms and six cases (12 days) of anthropogenically polluted particles were observed in the central area of the Korean Peninsula in 2009. PM10 mass concentrations increased at both Anmyon and Cheongwon in the cases of mineral dustfall and anthropogenically polluted particles. Cases of dustfall from sandstorms and anthropogenic polluted particles, with increasing PM10 mass concentrations, showed higher AOD values in the Yellow Sea region. 相似文献
Concentrations of selected heavy metals (Cd, Cr, Cu, Pb, Ni, Fe, and Zn), nutrients (NO3? and NH3), fecal coliform colonies, and other multiple physical–chemical parameters were measured seasonally from 12 locations in an urban New Jersey estuary between 1994 and 2008. Stepwise regression, principal component analysis, and cluster analysis were used to group water quality results and sampling locations, as well as to assess these data’s relationship to sewage treatment effluents and the distance to the mouth of the river. The BOD5, NH3, NO3? and fecal coliform counts clustered as one group and positively correlated to the distances from treated effluent and the measures of magnitude at the discharge points. Dissolved solids and most metal species scored high along a single principal component axes and were significantly correlated with the proximity to the industrialized area. From these data, one can conclude that the effluent discharge has been a main source of anthropogenic input to the Hackensack River over the past 15 years. Therefore, the greatest improvement to water quality would come from eliminating the few remaining combined sewer overflows and improving the removal of nutrients from treated effluents before they are discharged into the creeks and river. 相似文献
The Tamsui River basin is located in Northern Taiwan and encompasses the most metropolitan city in Taiwan, Taipei City. The Taiwan Environmental Protection Administration (EPA) has established 38 water quality monitoring stations in the Tamsui River basin and performed regular river water quality monitoring for the past two decades. Because of the limited budget of the Taiwan EPA, adjusting the monitoring program while maintaining water quality data is critical. Multivariate analysis methods, such as cluster analysis (CA), factor analysis (FA), and discriminate analysis (DA), are useful tools for the statistically spatial assessment of surface water quality. This study integrated CA, FA, and DA to evaluate the spatial variance of water quality in the metropolitan city of Taipei. Performing CA involved categorizing monitoring stations into three groups: high-, moderate-, and low-pollution areas. In addition, this categorization of monitoring stations was in agreement with that of the assessment that involved using the simple river pollution index. Four latent factors that predominantly influence the river water quality of the Tamsui River basin are assessed using FA: anthropogenic pollution, the nitrification process, seawater intrusion, and geological and weathering processes. We plotted a spatial pattern using the four latent factor scores and identified ten redundant monitoring stations near each upstream station with the same score pattern. We extracted five significant parameters by using DA: total organic carbon, total phosphorus, As, Cu, and nitrate, with spatial variance to differentiate them from the polluted condition of the group obtained by using CA. Finally, this study suggests that the Taiwan EPA can adjust the surface water-monitoring program of the Tamsui River by reducing the monitoring stations to 28 and the measured chemical parameters to five to lower monitoring costs. 相似文献
Bioleaching from soil artificially contaminated with analogues of radionuclides, Co and Sr, was carried out using a Fe-oxidizing
bacterium, Acidithiobacillus ferrooxidans. Due to bacterial metabolism, the pH and dissolved Fe3+ concentration in a biotic slurry decreased and increased respectively, over time, but the concentrations of Co and Sr extracted
from the soil showed no significant enhancement compared with those under abiotic control. In both cases, Co and Sr were leached
from the soil during the initial period of the experiment, due to the initially low solution pH of 2.0, and the dissolved
concentrations remained almost constant for the duration of the experiment (300 h). Since oxidation of Fe2+ by A. ferrooxidans led to the production of Fe precipitates and colloidal suspensions, the Co and Sr extracted into solution were most likely
re-adsorbed onto the Fe solids. Also, A. ferrooxidans, without an external supply of Fe2+, extracted almost equal or greater amounts of Co and Sr from the soil than when Fe2+ was supplied. Under the same leaching conditions, the extent of Sr removal was much lower than that of Co. On the contrary
to the high efficiency of microbial metal leaching in biohydrometallurgy for low-graded sulfide ores, which has been widely
documented, conventional bioleaching techniques with A. ferrooxidans supplied with enough Fe2+ showed low efficiency for the removal of radionuclides loosely bound onto soil particle surfaces. 相似文献