首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2238篇
  免费   17篇
  国内免费   91篇
安全科学   105篇
废物处理   210篇
环保管理   280篇
综合类   293篇
基础理论   392篇
环境理论   1篇
污染及防治   783篇
评价与监测   193篇
社会与环境   74篇
灾害及防治   15篇
  2023年   11篇
  2022年   33篇
  2021年   36篇
  2020年   12篇
  2019年   41篇
  2018年   70篇
  2017年   58篇
  2016年   78篇
  2015年   54篇
  2014年   67篇
  2013年   178篇
  2012年   123篇
  2011年   143篇
  2010年   96篇
  2009年   129篇
  2008年   134篇
  2007年   144篇
  2006年   128篇
  2005年   114篇
  2004年   105篇
  2003年   97篇
  2002年   88篇
  2001年   62篇
  2000年   35篇
  1999年   24篇
  1998年   20篇
  1997年   23篇
  1996年   16篇
  1995年   18篇
  1994年   18篇
  1993年   19篇
  1992年   10篇
  1991年   19篇
  1990年   10篇
  1989年   9篇
  1988年   10篇
  1986年   7篇
  1985年   8篇
  1984年   7篇
  1983年   7篇
  1982年   10篇
  1981年   10篇
  1980年   9篇
  1978年   6篇
  1976年   5篇
  1974年   4篇
  1973年   5篇
  1972年   6篇
  1971年   6篇
  1969年   5篇
排序方式: 共有2346条查询结果,搜索用时 437 毫秒
731.
Lee EH  Cho KS 《Chemosphere》2008,71(9):1738-1744
Cyclohexane is a recalcitrant compound that is more difficult to degrade than even n-alkanes or monoaromatic hydrocarbons. In this study, a cyclohexane-degrading consortium was obtained from oil-contaminated soil by an enrichment culture method. Based on a 16S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis method, this consortium was identified as comprising Alpha-proteobacteria, Actinobacteria, and Gamma-proteobacteria. One of these organisms, Rhodococcus sp. EC1, was isolated and shown to have excellent cyclohexane-degrading ability. The maximum specific cyclohexane degradation rate (Vmax) for EC1 was 246 micromol g-DCW(-1) (dry cell weight)h(-1). The optimum conditions of cyclohexane degradation were 25-35 degrees C and pH 6-8. In addition to its cyclohexane degradation abilities, EC1 was also able to strongly degrade hexane, with a maximum specific hexane degradation rate of 361 micromol g-DCW(-1)h(-1). Experiments using 14C-hexane revealed that EC1 mineralized 40% of hexane into CO2 and converted 53% into biomass. Moreover, EC1 could use other hydrocarbons, including methanol, ethanol, acetone, methyl tert-butyl ether, pyrene, diesel, lubricant oil, benzene, toluene, ethylbenzene, m-xylene, p-xylene and o-xylene. These findings collectively suggest that EC1 may be a useful biological resource for removal of cyclohexane, hexane, and other recalcitrant hydrocarbons.  相似文献   
732.
Han GB  Park NK  Yoon SH  Lee TJ 《Chemosphere》2008,72(11):1744-1750
SO(2) reduction by CO over SnO(2) catalyst was studied in this work. The parameters were the reaction temperature, space velocity (GHSV) and [CO]/[SO(2)] molar ratio. The optimal temperature, GHSV and [CO]/[SO(2)] molar ratio were 550 degrees C, 8000 h(-1) and 2.0, respectively. Under these conditions, the SO(2) conversion and sulfur selectivity were about 78% and 68%, respectively. The following reaction pathway involving two mechanisms was proposed in SO(2) reduction by CO over SnO(2) catalyst: in the first step involving Redox mechanism, the elemental sulfur was produced by the mobility of the lattice oxygen between SO(2) and SnO(2) surface. In the second step, COS was formed by the side reaction between elemental sulfur and CO or metal sulfide and CO. In the third step involving COS intermediate mechanism, the abundant elemental sulfur was produced by the SO(2) reduction by COS which was produced in the second step and was more effective reducing agent than CO.  相似文献   
733.
Yang JH  Lee HG  Park KY 《Chemosphere》2008,72(8):1188-1192
None of bioassays is complete for assessing biological impact in humans upon the xenobiotic exposure due to species and organ-specific responsiveness. Thus, it is speculated that the human cell-based bioassay may be more appropriate system because of its direct relevance to humans. Here, we have developed a human epidermal cell-based bioassay for the dioxins and related compounds. The AD12-SV40-immortalized human keratinocyte cell line was stably transfected with a recombinant expression vector which contains the luciferase gene under dioxin-inducible control of four DREs. The tansfectants showed a consistent dose-response of luciferase activity upon dioxin exposure even after 120 passages. The maximal half effective dose (EC50) was 200 pM with a maximum of 32-fold induction of luciferase activity at 5 nM. The minimum detection limit was 10 pM. Optimal exposure time for the assay was 24h. When cells were treated with aryl hydrocarbon receptor agonists of different toxic equivalent factor (TEF) values, the shape of the dose-response curve for each compound was parallel to that of TCDD and the maximum response was similar, indicating that this bioassay system can be applied to generate the total toxic equivalency (TEQ) estimate from the samples. When relative induction potency of luciferase activities for each compound was calculated, it was similar to WHO-TEF values within an order of magnitude. This human cell system can be used as an efficient screening tool to quantify the TEQ values of dioxin-like chemicals in the samples and may help understand the interspecies difference between humans and animals.  相似文献   
734.
This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges–Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 µg/L to 191 µg/L with a mean concentration of 33 µg/L. Groundwater is mainly Ca–HCO3 type with high concentrations of dissolved As, Fe, and Mn, but low level of SO4. The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 µg/L. Deeper aquifer (> 100 m depth) has a mean arsenic concentration of 18 µg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.  相似文献   
735.
Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m3 year− 1) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n = 72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe, NH4+, NO3, turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L− 1, max. 5.58 mg L− 1), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes.Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels.  相似文献   
736.
Oyster shell, a byproduct of shellfish-farming in Korea and containing a high amount of CaCO(3), has a high potential to be used as a liming material in agriculture. However, the agricultural utilization of oyster shell is limited due to its high concentration NaCl. The oyster-shell meal collected had a low concentration of water soluble NaCl (mean 2.7 g kg(-1)), which might be a result of stacking the material for 6 months in the open field. It has a very similar liming potential with calcium carbonate, with 3.4 and 3.8 Mg ha(-1) for silt loam (SiL, pH 6.2) and sandy loam (SL, pH 5.8) to bring the soil pH to 6.5, respectively. To determine the effect of crushed oyster-shell meal on improving soil chemical and biological properties and crop plant productivity, oyster-shell meal was applied at rates of 0, 4, 8, 12, and 16 Mg ha(-1) before transplanting Chinese cabbage (Brassica campestris L.) in the two soils mentioned above. Soil pH was significantly increased to 6.9 and 7.4 by 16 Mg ha(-1) shell meal application (4 times higher level than the recommendation) in SiL and SL, respectively, at harvesting stage. The effect of liming was found higher in SL compared to SiL soil, probably due to the different buffering capacity of the two soils. The concentration of NaCl and EC value of soils were found slightly increased with shell meal applications, but no salt damage was observed. Oyster-shell meal application increased soil organic matter, available P, and exchangeable cations concentrations. The improved soil pH and nutrient status significantly increased the microbial biomass C and N concentrations and stimulated soil enzyme activities. With the exception of acid phosphomonoesterase (PMEase) activity, which decreased with increasing soil pH in SL but slightly increased in SiL, the activities of urease and alkali PMEase increased markedly with increasing soil pH by shell meal application. The improved soil chemical and biological properties resulted in increased crop productivity. The highest yield in Chinese cabbage was achieved following the application of 8 Mg ha(-1) oyster-shell meal. Conclusively, crushed oyster shell could be used as an alternative liming material to restore the soil chemical and microbial properties in upland soil and to increase crop productivity.  相似文献   
737.
Waste incineration in a small incinerator is a simple and convenient way of treating waste discharged from small areas or from large facilities and buildings such as business centers, marketplaces, factories, and military units. Despite their ostensible advantages, however, many small incinerators frequently suffer from serious problems, e.g., unsystematic waste feeding, unstable combustion, deficient air pollution control devices, and consequently, environmental pollution. To obtain a better understanding of the characterization of wastes in small incinerators, we investigated a series of fundamental characteristics, i.e., physical composition, bulk density, proximate and ultimate analysis, potential energy content, and so on. The main waste components in small incinerators were identified as paper and plastic; the proportion of food waste was less than that in large incinerators. Especially, a low ratio of food waste had a strong influence on other waste characteristics, e.g., lower moisture content and bulk density, and higher potential energy. On the other hand, in contrast with that of HCl, there was no distinguishable linear relationship between Cl content in waste and PCDD/DF concentration in combustion gas.  相似文献   
738.
Alginic acid and metal alginates are prepared from fresh algae using extraction method. A FTIR spectrum indicates that alginic acid is converted into the metal alginate. Comparing calcium and cobalt alginates, asymmetric stretching of free carboxyl group of calcium alginate at 1630 cm−1 is shifted to 1585 cm−1 in cobalt alginate, due to the change of charge density, radius and atomic weight of the cation, creating a new environment around the carbonyl group. The strong exothermic peak of alginic acid in DSC thermogram indicates the decomposition of biopolymer, whereas strong exothermic peak of metal alginate in DSC thermogram attributed to the decomposition of biopolymer and formation of respective carbonate. Based on DSC study, the decomposition of cobalt alginate occurs at higher temperature comparing to those of sodium and calcium alginate, which may conclude into the higher stability of cobalt alginate. TGA results reveal that, cobalt alginate is more stable than calcium and sodium alginate at 300 °C temperature. Surface morphology (at same magnification), as well as porosity (%) and pore size distribution results change with metals present in different metal alginates.  相似文献   
739.
Yeom DH  Lee SA  Kang GS  Seo J  Lee SK 《Chemosphere》2007,67(11):2282-2292
This study evaluated the effects of an industrial wastewater treatment plant (IWTP) and a municipal wastewater treatment plant (MWTP) effluents on a variety of bioindicators ranging from biochemical, organism, and population-level responses in pale chub (Zacco platypus) and fish community structure. The Index of Biotic Integrity (IBI) indicated that the site upstream of these wastewater treatment plant discharges is in fair–good condition and downstream of the plant is in poor condition. The EROD (ethoxyresorufin-O-deethylase) activity, condition factor, and liver somatic index were significantly increased at the downstream site compared to those of the upstream site. The most significant change observed in pale chub population in the downstream site of the Miho Stream, relative to the upstream population, was the total absence of an younger age group. Stressors impacting the downstream site were identified as mostly organic or nutrient enrichment and habitat degradation associated with wastewater treatment plants. The results of causal analysis suggest that the primary causes affecting fish population in the downstream site are through both size-selective mortality caused by ammonia toxicity and recruitment failure caused by habitat degradation and reproduction problem due to an IWTP and MWTP effluents.  相似文献   
740.
Ahsan N  Lee DG  Lee SH  Kang KY  Lee JJ  Kim PJ  Yoon HS  Kim JS  Lee BH 《Chemosphere》2007,67(6):1182-1193
Copper is an essential micronutrient for plants. Present at a high concentration in soil, copper is also regarded as a major toxicant to plant cells due to its potential inhibitory effects against many physiological and biochemical processes. The interference of germination-related proteins by heavy metals has not been well documented at the proteomic level. In the current study, physiological, biochemical and proteomic changes of germinating rice seeds were investigated under copper stress. Germination rate, shoot elongation, plant biomass, and water content were decreased, whereas accumulation of copper and TBARS content in seeds were increased significantly with increasing copper concentrations from 0.2mM to 1.5mM followed by germination. The SDS-PAGE showed the preliminary changes in the polypeptides patterns under copper stress. Protein profiles analyzed by two-dimensional electrophoresis (2-DE) revealed that 25 protein spots were differentially expressed in copper-treated samples. Among them, 18 protein spots were up-regulated and 7 protein spots were down-regulated. These differentially displayed proteins were identified by MALDI-TOF mass spectrometry. The up-regulation of some antioxidant and stress-related proteins such as glyoxalase I, peroxiredoxin, aldose reductase, and some regulatory proteins such as DnaK-type molecular chaperone, UlpI protease, and receptor-like kinase clearly indicated that excess copper generates oxidative stress that might be disruptive to other important metabolic processes. Moreover, down-regulation of key metabolic enzymes like alpha-amylase or enolase revealed that the inhibition of seed germinations after exposure to excess copper not only affects starvation in water uptake by seeds but also results in failure in the reserve mobilization processes. These results indicate a good correlation between the physiological and biochemical changes in germinating rice seeds exposed to excess copper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号