首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16098篇
  免费   170篇
  国内免费   287篇
安全科学   452篇
废物处理   529篇
环保管理   2219篇
综合类   3831篇
基础理论   3829篇
环境理论   8篇
污染及防治   4282篇
评价与监测   800篇
社会与环境   525篇
灾害及防治   80篇
  2022年   124篇
  2019年   114篇
  2018年   223篇
  2017年   173篇
  2016年   264篇
  2015年   247篇
  2014年   286篇
  2013年   1212篇
  2012年   393篇
  2011年   578篇
  2010年   436篇
  2009年   537篇
  2008年   593篇
  2007年   629篇
  2006年   560篇
  2005年   432篇
  2004年   469篇
  2003年   499篇
  2002年   422篇
  2001年   661篇
  2000年   449篇
  1999年   277篇
  1998年   189篇
  1997年   192篇
  1996年   205篇
  1995年   215篇
  1994年   237篇
  1993年   215篇
  1992年   214篇
  1991年   212篇
  1990年   232篇
  1989年   223篇
  1988年   185篇
  1987年   179篇
  1986年   164篇
  1985年   182篇
  1984年   166篇
  1983年   184篇
  1982年   183篇
  1981年   179篇
  1980年   159篇
  1979年   156篇
  1978年   154篇
  1977年   136篇
  1976年   141篇
  1975年   126篇
  1974年   148篇
  1973年   134篇
  1972年   134篇
  1967年   117篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
481.
482.
Cameron Highlands is a mountainous region with steep slopes. Gradients exceeding 20 are common. The climate is favourable to the cultivation of tea, sub-tropical vegetables and flowers (under rain-shelter). Crop production is sustained by high fertiliser and manure applications. However, agriculture in this environment is characterised by high levels of soil erosion and environmental pollution. A study on the sustainability of these agro-ecosystems was conducted. Results indicated that soil loss was in the range of 24–42 ton/ha/yr under vegetables and 1.3 ton under rain-shelter. Sediment load in the vegetable sub-catchment reached 3.5 g/L, 50 times higher than that associated with flowers under rain-shelter and tea. The sediments contained high nutrient loads of up to 470 kg N/ha/yr. The N, P and K lost in runoff from cabbage farms was 154 kg/season/ha, whereas in chrysanthemum farms it was 5 kg. In cabbage farms, the N, P, and K lost through leaching was 193 kg/season/ha. The NO3–N concentration in the runoff from the cabbage farms reached 25 ppm but less than 10 ppm in runoff from rain-shelters. Inorganic pollution in the rivers was within the acceptable limit of 10 ppm. The sustainability of the agro-ecosystems is in the order of tea { > } rain–shelter ≫ vegetables.  相似文献   
483.
Providing an accurate estimate of the dry component of N deposition to low N background, semi-natural habitats, such as bogs and upland moors dominated by Calluna vulgaris is difficult, but essential to relate nitrogen deposition to effects in these communities. To quantify the effects of NH3 inputs to moorland vegetation growing on a bog at a field scale, a field release NH3 fumigation system was established at Whim Moss (Scottish Borders) in 2002. Gaseous NH3 from a line source was released along of a 60 m transect, when meteorological conditions (wind speed >2.5 m s?1 and wind direction in the sector 180–215°) were met, thereby providing a profile of decreasing NH3 concentration with distance from the source. In a complementary study, using a NH3 flux chamber system, the relationships between NH3 concentrations and cuticular resistances were quantified for a range of NH3 concentrations and micrometeorological conditions for moorland vegetation. Cuticular resistances increased with NH3 concentration from 11 s m?1 at 3.0 μg m?3 to 30 s m?1 at 30 μg m?3. The NH3 concentration data and the concentration-dependent canopy resistance are used to calculate NH3 deposition taking into account leaf surface wetness. The implications of using an NH3 concentration-dependent cuticular resistance and the importance for refining critical loads are discussed.  相似文献   
484.
A field ammonia (NH3) release experiment and open top chambers containing moorland monoliths continuously fumigated with NH3 or sprayed with NH4Cl were used to assess the potential for using δ15N values in determining the area of influence around a point NH3 emission source. δ15N values are being increasingly used as environmental tracers and we tested the hypothesis that the δ15N signal from an NH3 emission source is observable in nearby vegetation. Using modified monitoring devices, atmospheric NH3 concentrations were found to decrease with distance from source, with δ15N values also reflecting this trend, producing a signal shift with changing concentration. Open top chamber studies of δ15N values of Calluna vulgaris (L.) Hull indicated a correlation with deposition treatments in current year shoots. Analysis of Calluna shoots from the NH3 release showed a similar trend of δ15N enrichment. Significant linear correlations between δ15N and percent N in plant material were found, both in the controlled conditions of the open top chambers and at the NH3 release site, illustrating the possible use of this technique in N deposition biomonitoring.  相似文献   
485.
The results from three long-term field manipulation studies of the impacts of increased nitrogen deposition (0–120 kg N ha?1 yr?1) on lowland and upland heathlands in the UK were compared, to test if common responses are observed. Consistent increases in Calluna foliar N content and decreases in litter C:N ratios were found across all sites, while increases in N leaching were not observed at any site over the range 0–80 kg ha?1 yr?1. However, the response of Calluna biomass did vary between sites, possibly reflecting site differences in nutrient status and management histories. Five versions of a simulation model of heathland responses to N were developed, each reflecting different assumptions about the fate and turnover of soil N. Model outputs supported the deduction from mass balance calculations at two of the field sites that N additions have resulted in an increase in immobilisation; the latter was needed to prevent the model overestimating measured N leaching. However, this version of the model significantly underestimated Calluna biomass. Model versions, which included uptake of organic N by Callunaand re-mobilisation of N from the soil organic store provided some improvement in the fit between modelled and field biomass data, but re-mobilisation also led to an overestimation of N leaching. Quantification of these processes and their response to increased N deposition are therefore critical to interpreting experimental data and predicting the long-term impacts of atmospheric deposition on heathlands and moorlands.  相似文献   
486.
Model estimates of NOy and NHx deposition across Britain for 1996 (5 km square resolution) were applied as explanatory variables to account for national-scale, fine-grained changes in plant species composition between 1990 and 1998. Plant species data were recorded from up to 27 fixed plots located within a stratified random sample of 596 1 km2. The response variable was a cover-weighted Ellenberg fertility score for each plot. Analyses were carried out separately for woodlands, semi-natural grasslands and heaths/bogs. Most of the variation in the botanical response variable occurred between plots within squares and so could not be explained by the model deposition data. NHx deposition estimates accounted for significant, but small components of between 1 km2 variation in the change in Ellenberg score in grasslands (5.6%) and heath/bogs (9.8%) but not woodlands. NOy deposition estimates were not significantly associated with vegetation change. Linear models provided the best fit and the slope of the relationship was lower for heath/bogs than grasslands. Further signal attribution at sub-kilometre square scales requires the development of fine-grained models of N deposition that can be generalised across regional sampling domains.  相似文献   
487.
This article discusses creating a sustainably protective engineered and human management system in perpetuity for sites with long‐lived radiological and chemical hazards. This is essential at this time because the federal government is evaluating its property as assets and attempting to reduce its holdings, while seeking to assure that health and ecosystems are not put at risk. To assist those who have a stake in the remediation, management, and stewardship of these and analogous privately owned sites, this article discusses current end‐state planning by reviewing the federal government's accelerated efforts to reduce its footprint and how those efforts relate to sustainability. The article also provides a list of questions organized around six elements of risk management and primary, secondary, and tertiary disease and injury prevention. Throughout the article, the U.S. Department of Energy (DOE) is used as an example of an organization that seeks to reduce its footprint, manage its budget, and be a steward of the sites that it is responsible for. However, the approach and questions are appropriate for land controlled by the Department of Defense (DOD), the General Services Administration (GSA), and other public and private owners of sites with residual contamination. © 2005 Wiley Periodicals, Inc.  相似文献   
488.
Hot Spots of Perforated Forest in the Eastern United States   总被引:1,自引:0,他引:1  
National assessments of forest fragmentation satisfy international biodiversity conventions, but they do not identify specific places where ecological impacts are likely. In this article, we identify geographic concentrations (hot spots) of forest located near holes in otherwise intact forest canopies (perforated forest) in the eastern United States, and we describe the proximate causes in terms of the nonforest land-cover types contained in those hot spots. Perforated forest, defined as a 0.09-ha unit of forest that is located at the center of a 7.29-ha neighborhood containing 60–99% forest with relatively low connectivity, was mapped over the eastern United States by using land-cover maps with roads superimposed. Statistically significant (P < 0.001) hot spots of high perforation rate (perforated area per unit area of forest) were then located by using a spatial scan statistic. Hot spots were widely distributed and covered 20.4% of the total area of the 10 ecological provinces examined, but 50.1% of the total hot-spot area was concentrated in only two provinces. In the central part of the study area, more than 90% of the forest edge in hot spots was attributed to anthropogenic land-cover types, whereas in the northern and southern parts it was more often associated with seminatural land cover such as herbaceous wetlands.  相似文献   
489.
Substantial amounts of NO3 from agricultural crop production systems on poorly drained soils can be transported to surface water via subsurface drainage. A field study was conducted from the fall of 1993 through 2000 on a tile-drained Canisteo clay loam soil (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) to determine the influence of fall vs. spring application of N and nitrapyrin [NP; 2-chloro-6-(trichloromethyl) pyridine] on NO3 losses from a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Four anhydrous ammonia treatments (fall N, fall N + NP, spring preplant N, and spring N + NP) were replicated four times and applied at 135 kg N ha(-1) for corn on individual drainage plots. Drainage occurred in all seven years. Seventy-one percent of the annual drainage and 75% of the annual NO3 loss occurred in April, May, and June. Fifty-four percent of the NO3 lost in the drainage occurred during the corn phase and 46% during the soybean phase. Annual flow-weighted NO3-N concentrations for the fall, fall + NP, spring, and spring + NP treatments averaged 14.3, 11.5, 10.7, and 11.3 mg L(-1) during the corn phase but annual NO3-N concentrations were still > or =10 mg L(-1) in three of six years for the spring preplant treatment. Averaged across the six rotation cycles, flow-normalized NO3-N losses ranked in the order: fall N > spring N + NP > fall N + NP > spring N. Under these conditions, NO3 losses in subsurface drainage from a corn-soybean rotation can be reduced 14% by spring N and 10% by late fall N + NP compared with fall-applied N. Nitrate losses were not appreciably reduced by adding NP to spring preplant N.  相似文献   
490.
Tillage erosion and its effect on soil properties and crop yield in Denmark   总被引:1,自引:0,他引:1  
Tillage erosion had been identified as a major process of soil redistribution on sloping arable land. The objectives of our study were to investigate the extent of tillage erosion and its effect on soil quality and productivity under Danish conditions. Soil samples were collected to a 0.45-m depth on a regular grid from a 1.9-ha site and analyzed for 137Cs inventories, as a measure of soil redistribution, soil texture, soil organic carbon (SOC) contents, and phosphorus (P) contents. Grain yield was determined at the same sampling points. Substantial soil redistribution had occurred during the past decades, mainly due to tillage. Average tillage erosion rates of 2.7 kg m(-2) yr(-1) occurred on the shoulderslopes, while deposition amounted to 1.2 kg m(-2) yr(-1) on foot- and toeslopes. The pattern of soil redistribution could not be explained by water erosion. Soil organic carbon and P contents in soil profiles increased from the shoulder- toward the toeslopes. Tillage translocation rates were strongly correlated with SOC contents, A-horizon depth, and P contents. Thus, tillage erosion had led to truncated soils on shoulderslopes and deep, colluvial soils on the foot- and toeslopes, substantially affecting within-field variability of soil properties. We concluded that tillage erosion has important implications for SOC dynamics on hummocky land and increases the risk for nutrient losses by overland flow and leaching. Despite the occurrence of deep soils across the study area, evidence suggested that crop productivity was affected by tillage-induced soil redistribution. However, tillage erosion effects on crop yield were confounded by topography-yield relationships.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号