首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   3篇
  国内免费   21篇
安全科学   25篇
废物处理   29篇
环保管理   23篇
综合类   42篇
基础理论   59篇
污染及防治   127篇
评价与监测   32篇
社会与环境   7篇
  2022年   10篇
  2021年   9篇
  2019年   8篇
  2018年   18篇
  2017年   20篇
  2016年   13篇
  2015年   3篇
  2014年   16篇
  2013年   42篇
  2012年   22篇
  2011年   30篇
  2010年   21篇
  2009年   21篇
  2008年   26篇
  2007年   17篇
  2006年   11篇
  2005年   9篇
  2004年   11篇
  2003年   8篇
  2002年   9篇
  2001年   12篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
排序方式: 共有344条查询结果,搜索用时 31 毫秒
181.
To accomplish the effective classifier and secure the accurate classification capabilities of black plastics, a comprehensive design methodology of fuzzy radial basis function neural networks is developed with the aid of principal component analysis and particle swarm optimization. Plastics recycling is the competitive method which can deal with the shortage of natural resource. To recycle and reuse the waste plastics, this study is given as the key issue to identify and classify waste plastics by resin type such as polyethylene terephthalate, polypropylene, polystyrene, etc. To complement the weak points of recognition and classification of the near-infrared radiation equipment, Raman spectroscopy is used to obtain qualitative as well as quantitative analysis of black plastics. To improve the identification performance of black plastics, an intelligent computing algorithm such as fuzzy radial basis function neural networks classifier and preprocessing algorithm as principal component analysis are applied to analyze and classify the obtained spectrum of black plastics. Finally, to optimize the structure as well as parameters of fuzzy radial basis function neural networks, particle swarm optimization technique is used. The obtained experimental results show that the proposed network architecture exhibits high classification capabilities in practical applications.  相似文献   
182.
Oil extraction from the oil-bearing biomass and waste materials has been considered as one of the biggest challenges in the biodiesel production process because it has been considered as the most energy- and cost-demanding step. This work provides a promising approach for the direct transformation without oil extraction from calcined montmorillonite clay (CMC) and microalgae by means of the non-catalytic thermo-chemical process in conjunction with the real continuous flow system. The introduced method showed the high tolerance of water, impurities, and free fatty acids (FFAs), which enable the combination of the esterification of FFAs and transesterification of triglycerides into a single step without the lipid extraction. For example, this study showed that the maximum achievable yield of biodiesel via the introduced methodology was 97 ± 0.5 % at the temperature regime of 380–480 °C and this biodiesel yield was enhanced in the presence of CO2. Thus, the introduced methodology for producing biodiesel could be an alternative way of the methanol liquefaction and transesterification under supercritical conditions.  相似文献   
183.
There has been a significant lack of land cover change studies in relation to deforestation in the Democratic People’s Republic of Korea (North Korea). The purpose of this study is to characterize deforestation in North Korea through land cover change trajectory and spatial analysis. We used three 30-m gridded land cover data sets for North Korea representing the conditions of the late 1980s, 1990s, and 2000s, respectively, as well as a digital elevation model. We examined the land cover trajectories during the two decades, i.e., which land cover became which at the pixel level. In addition, we calculated topographic characteristics of deforested pixels. Major findings from the study are summarized as follows: (1) net forest loss in North Korea was negligible in the latter decade compared to the former (>5000 km2), whereas other land cover changes were still active; (2) as a result of deforestation, forest land cover became mostly agricultural, particularly in the latter decade (95 %); (3) expansion of agricultural land cover continued during the time, increasing by >42 %; and (4) elevation and slope of deforested areas decreased slightly in the latter decade. The key contribution of the study is that it has demonstrated which land cover became which at the 30-m pixel level, complementing existing studies that examined overall forest stock in North Korea.  相似文献   
184.
In order to explore the environmental behavior of reduced sulfur compounds (RSC) as malodorous components emitted from diverse source processes, the distribution characteristics of four sulfur (S) compounds - hydrogen sulfide (H2S), methyl mercaptan (CH3SH), dimethyl sulfide (DMS: (CH3)2S), and dimethyl disulfide (DMDS: (CH3)2S2) – were investigated in a municipal landfill area. In the course of this study, their ambient concentration levels were measured during two time periods from 13 individual spots selected as a function of distance from the center of the landfill site. The results generally indicated the absolute dominance of H2S over the other S compounds investigated (up to 5 km radius) such that their mean values were found as 1415 (H2S), 148 (DMS), 20.6 (CH3SH), and 14.4 ppt (DMDS). When our data were compared in terms of either varying distance from the source or relationship with meteorological conditions, the H2S data sets were most evident to reflect the potential effects of strong source processes in the landfill environment, relative to other S gases (or to volatile organic compounds measured concurrently). The results of this study further indicated the relatively good correspondence between the measured H2S concentration level and humans' intuitive sensory of odor and nuisance.  相似文献   
185.
The mutagenic activity of XAD-2 adsorbates and water extracts recovered from nine locations of the Kumho River was tested on S. typhimurium TA98 strain to identify the source of the mutagenicity. A sampling site, receiving effluents from the textile industrial complex located in Daegu City, showed extraordinarily high mutagenic activity, especially in the presence of S9 mixture, at all sampling time in both XAD-2 adsorbates and dichloromethane extracts. This indicated the existence of the frame-shift mutagens in the Kumho River, same type of mutagens detected in previous studies by other researchers in the Nakdong River into which the Kumho River discharges. The fractionation study showed that the mutagenic chemicals in the river water are mid-polar. Furthermore, mean tail length obtained by single cell gel electrophoresis assay (Comet assay) showed consistent dose-dependent DNA damage, indicating that the chemicals in the river water not only act as frame-shift mutagens but also break human lymphocytes DNA strain. Chemical identification of the mutagens should be required.  相似文献   
186.
Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. This "produced water" is characterized by saline water containing a variety of pollutants, including water soluble and immiscible organics and many inorganic species. To reuse produced water, removal of both the inorganic dissolved solids and organic compounds is necessary. In this research, the effectiveness of a pretreatment system consisting of surfactant modified zeolite (SMZ) adsorption followed by a membrane bioreactor (MBR) was evaluated for simultaneous removal of carboxylates and hazardous substances, such as benzene, toluene, ethylbenzene, and xylenes (BTEX) from saline-produced water. A laboratory-scale MBR, operated at a 9.6-hour hydraulic residence time, degraded 92% of the carboxylates present in synthetic produced water. When BTEX was introduced simultaneously to the MBR system with the carboxylates, the system achieved 80 to 95% removal of BTEX via biodegradation. These results suggest that simultaneous biodegradation of both BTEX and carboxylate constituents found in produced water is possible. A field test conducted at a produced water disposal facility in Farmington, New Mexico confirmed the laboratory-scale results for the MBR and demonstrated enhanced removal of BTEX using a treatment train consisting of SMZ columns followed by the MBR. While most of the BTEX constituents of the produced water adsorbed onto the SMZ adsorption system, approximately 95% of the BTEX that penetrated the SMZ and entered the MBR was biodegraded in the MBR. Removal rates of acetate (influent concentrations of 120 to 170 mg/L) ranged from 91 to 100%, and total organic carbon (influent concentrations as high as 580 mg/L) ranged from 74 to 92%, respectively. Organic removal in the MBR was accomplished at a low biomass concentration of 1 g/L throughout the field trial. While the transmembrane pressure during the laboratory-scale tests was well-controlled, it rose substantially during the field test, where no pH control was implemented. The results suggest that pretreatment with an SMZ/MBR system can provide substantial removal of organic compounds present in produced water, a necessary first step for many water-reuse applications.  相似文献   
187.
A novel two-stage wet electrostatic precipitator (ESP) has been developed using a carbon brush pre-charger and collection plates with a thin water film. The electrical and particle collection performance was evaluated for submicrometer particles smaller than 0.01- 0.5 micrometer in diameter by varying the voltages applied to the pre-charger and collection plates as well as the polarity of the voltage. The collection efficiency was compared with that calculated by the theoretical models. The long-term performances of the ESP with and without water films were also compared in tests using Japanese Industrial Standards dust. The experimental results show that the carbon brush pre-charger of the two-stage wet ESP had approximately 10% particle capture, while producing ozone concentrations of less than 30 ppb. The produced amounts of ozone are significantly lower than the current limits set by international agencies. The ESP also achieved a high collection rate performance, averaging 90% for ultrafine particles, as based on the particle number concentration at an average velocity of 1 m/sec corresponding to a residence time of 0.17 sec. Higher particle collection efficiency for the ESP can be achieved by increasing the voltages applied to the pre-charger and the collection plates. The decreased collection efficiency that occurred during dust loading without water films was completely avoided by forming a thin water film on the collection plates at a water flow rate of 6.5 L/min/m(2).  相似文献   
188.
Abstract: Alluvial fans in southern California are continuously being developed for residential, industrial, commercial, and agricultural purposes. Development and alteration of alluvial fans often require consideration of mud and debris flows from burned mountain watersheds. Accurate prediction of sediment (hyper‐concentrated sediment or debris) yield is essential for the design, operation, and maintenance of debris basins to safeguard properly the general population. This paper presents results based on a statistical model and Artificial Neural Network (ANN) models. The models predict sediment yield caused by storms following wildfire events in burned mountainous watersheds. Both sediment yield prediction models have been developed for use in relatively small watersheds (50‐800 ha) in the greater Los Angeles area. The statistical model was developed using multiple regression analysis on sediment yield data collected from 1938 to 1983. Following the multiple regression analysis, a method for multi‐sequence sediment yield prediction under burned watershed conditions was developed. The statistical model was then calibrated based on 17 years of sediment yield, fire, and precipitation data collected between 1984 and 2000. The present study also evaluated ANN models created to predict the sediment yields. The training of the ANN models utilized single storm event data generated for the 17‐year period between 1984 and 2000 as the training input data. Training patterns and neural network architectures were varied to further study the ANN performance. Results from these models were compared with the available field data obtained from several debris basins within Los Angeles County. Both predictive models were then applied for hind‐casting the sediment prediction of several post 2000 events. Both the statistical and ANN models yield remarkably consistent results when compared with the measured field data. The results show that these models are very useful tools for predicting sediment yield sequences. The results can be used for scheduling cleanout operation of debris basins. It can be of great help in the planning of emergency response for burned areas to minimize the damage to properties and lives.  相似文献   
189.
Although production of sewage sludge increases every year, its proper treatment has only been recently raised as a new issue, as current landfill and ocean dumping arrangements are expected to become increasingly difficult to manage in the future. The Korean Ministry of Environment plans to diversify its processing facilities and expand its processing systems by 2011, with the purpose of processing all sludge produced in Korea. According to this plan, incineration (including incineration of municipal wastes) will process 30% of the entire sewage sludge throughout the country in 2011. This study reviews the characteristics of PAH, which is one of the organic substances found in sewage sludge during the incinerating process. The total amount of PAH produced from sewage sludge incineration was found to be 6.103 mg/kg on average, and investigation performed on 16 PAHs of inlets and outlets of the air control devices at five full-scale incineration facilities showed that concentrations of the PAHs on the inlet and on the outlet ranged from 3.926 to 925.748 microg/m(3) and from 1.153 to 189.449 microg/m(3), respectively. In the case of the incineration facility fed with municipal waste (95%) and sewage sludge (5%), the total of the PAH emissions concentration was higher than that found at the incineration facilities used exclusively to treat sewage. The combustion of waste vinyl and plastics contained in municipal waste fed into the facility might contribute to the high levels of PAHs in the stack gas. However more investigation is needed on the production mechanism of PAHs at different operating conditions of the incineration facilities, such as the types of waste, and other relevant factors.  相似文献   
190.
The reduction and stabilization of biodegradable waste were studied using three operational stages in an aerobic stabilization system. The system used for mechanical/biological treatment utilized two-shaft screws in multiple box reactors. In the first operational stage, 50-kg batches of biodegradable waste were charged in each of the three reactors, with peat moss used as a bulking agent. Analysis revealed that peat moss can be used at this initial stage, based on the observed increase in temperature and carbon dioxide levels. The second stage of operation involved adding 100 kg/day of biodegradable waste to the first reactor. It was confirmed that a continuous reaction is possible by the addition of more waste. In the third stage of operation, 20 kg/day of the 100 kg/day of biodegradable waste feed was replaced with material fed back from the third reactor. At this stage, final product was also removed from the third reactor. The temperature was not controlled, and up to 8%–9% carbon dioxide was formed, enabling normal activation of decomposition. This three-stage operational test confirmed the expected decomposition of organic matter and biodegradable materials. The rate of mass reduction calculated for the final product compared with the input amount was 94.3%, which confirmed that this system would be a useful means for the reduction and stabilization of biodegradable waste. This study also measured the water content of the material in the reactors: the water content decreased as the reaction progressed. This indicated that the activation of microorganisms did not occur sufficiently in the second and third reactors. Future studies of methods to control the internal water content of each reactor should improve the decomposition efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号