首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   0篇
  国内免费   3篇
安全科学   6篇
废物处理   21篇
环保管理   2篇
综合类   13篇
基础理论   24篇
环境理论   1篇
污染及防治   24篇
评价与监测   4篇
社会与环境   4篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   7篇
  2011年   7篇
  2010年   6篇
  2009年   6篇
  2008年   5篇
  2007年   2篇
  2006年   7篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1989年   1篇
  1986年   2篇
  1984年   2篇
  1977年   1篇
  1976年   2篇
  1954年   1篇
排序方式: 共有99条查询结果,搜索用时 359 毫秒
51.
Perfluorinated compounds (PFCs) were detected in sediment core samples collected in Tokyo Bay to reveal their time trends. The core sample deposited during 1950s-2004 was divided into two- to three-year intervals and the concentrations of 24 types of PFCs were determined. Perfluorooctane sulfonate (PFOS) decreased gradually from the early 1990s and its precursor decreased rapidly in the late 1990s, whereas perfluorooctanoic acid (PFOA) increased rapidly. The observed trends were regarded as a reflection of the shift from perfluorooctyl sulfonyl fluoride (PFOSF)-based products to telomer-based products after the phaseout of PFOSF-based products in 2001. The branched isomers of perfluoroundecanoic acid (PFUnDA) and perfluorotridecanoic acid (PFTrDA) were detected in the sample with its ratio of linear-isomer/branched-isomer concentrations decreasing. In this study, we revealed that the sediment core can serve as a tool for reconstructing the past pollution trend of PFCs and can provide interesting evidence concerning their environmental dynamics and time trend.  相似文献   
52.
The potency of free-living and animal-associated marine bacteria to produce antimicrobial substances has been studied in 491 strains isolated from northern and southern parts of the Pacific Ocean. A total of 26% (126 out of 491) of the strains examined produced antimicrobial compounds against 11 test bacterial strains (TBS) including the fish pathogens Aeromonas hydrophila and Vibrio anquillarum. Antimicrobial substances (AS) produced by marine bacteria were especially active against Staphylococcus epidermidis, Proteus vulgaris, Enterococcus faecalis, and Candida albicans. Twelve strains, isolated from different sources, were chosen as promising candidates, producing a number of AS. Production of AS varied within 24 to 72 h, increasing in a culture medium based on natural sea water with Br-ions, and after attachment to polymeric surfaces. In order to study the influence of adsorption, selected strains with a high potential for antimicrobial production were cultivated on polymeric surfaces with different hydrophobicities and chemical functionalities. These parameters of the surface hydrophobicity (measured by means of water contact angles) and chemical functionality of the surfaces were manipulated using the photo- and thermochemistry of a polymeric system (diazo-naphto-quinone/novolak) commonly used as a photoresistant material in semiconducto-manufacturing. The highest antimicrobial activities occurred on hydrophilic surfaces (standard exposed photoresistant films), whereas the number of attached cells was greater on hydrophobic surfaces, characterized as unexposed resistant films. These results suggest that the chemical nature of induced hydrophilicity may also be a major factor in controlling antimicrobial activity of adsorbed bacteria. Received: 5 March 1997 / Accepted: 24 August 1997  相似文献   
53.
54.
Tread compound of truck tires is based primarily on natural rubber or blends of natural rubber (NR) and synthetic polymers in combination with high grade carbon black. When the tread compound is attacked by a strain of Nocardia capable of degrading NR, part of the NR in the compound is mineralized, and part is disintegrated to very small black particles. The small black particles consist of the residual rubber and inorganic fillers. At higher NR content, large and deep cavities are formed on the surface of the pieces of the tread compound after microbial disintegration. At lower content of NR, large but very shallow cavities or very small pits can be seen on the tread surface. During microbial growth on the tread compound, isoprene oligomers with molecular weight of about two thousand are produced. Not only the isoprene oligomers, but also butadiene oligomers are produced during microbial disintegration of the tread compound of NR/synthetic rubber blend.  相似文献   
55.
56.
57.
58.
Phthalate esters (PEs) have been suspected to be environmental endocrine disruptors and the detailed mechanism remains unclear. The activities of these chemicals can be enhanced through chemical modification under the environmental conditions. We demonstrate that PEs acquire unequivocal estrogenic activity by light exposure. Through UV exposure of an aqueous PE solution, one active photoproduct, identified as 4-hydroxyPE (PE-4OH) based on its characteristic UV and mass spectra, was detected in an estrogen receptor alpha-dependent transactivation assay. PE-4OH was effectively generated by UV 290 nm. The PE-4OH production accompanied H2O2 generation in a UV dose-dependent manner. Both PE and UV irradiation were indispensable in the generation of H2O2. Addition of H2O2 to the PE solution increased PE-4OH production under UV irradiation. The PE-4OH production was also observed in the PE reaction with the Fenton reagent generating hydroxyl radical without UV irradiation. The proposed mechanism for PE-4OH production based on these results is such that by PE-mediated photosensitization H2O2 is generated from O2 and H+ and decomposed to hydroxyl radical, thus oxidizing the PE benzene ring. The PEs-4OH are remarkably active estrogenic products of PEs and would be involved in ER-mediated endocrine disruption.  相似文献   
59.
A new type of waste gasification and smelting system using oxygen blowing based on high-temperature metallurgy, was developed by Sumitomo Metals, Japan. This system can steadily gasify and melt not only municipal waste, but also plastic waste and polyvinyl chloride (PVC) waste by using a top-blow oxygen lance together with sideways-blow oxygen lances. As a result of gasification in the high-temperature reducing atmosphere and rapid gas cooling, dioxin-free, high-calorie purified gas was produced. Ash components in the wastes were smelted in a high-temperature reducing atmosphere, and high-quality slag free of heavy metals was produced. Most of the chlorine in the wastes was converted into hydrogen chloride in the off gas. The hydrogen chloride can be recovered as hydrochloric acid or chlorine, which are recyclable to PVC manufacturing.  相似文献   
60.
For the evaluation of pedestrian protection, the European Enhanced Vehicle-Safety Committee Working Group 17 report is now commonly used. In the evaluation of head injuries, the report takes into account only the hood area of the vehicle. But recent pedestrian accident data has shown the injury source for head injury changing to the windshield and A-pillar from the hood. The head contact points are considered to fall on a parallel to the front shape of the vehicle along the lateral direction, but the rigidity of the outer side construction is different from the center area. The purpose of this study is to consider the reason for the change in injury source for recent vehicle models. The head contact points and contact conditions, speed and angle, are thought to be influenced not only by the vehicle's geometry, but also its construction (rigidity). In this study, vehicle-pedestrian impact simulations were calculated with a finite element model for several hitting positions, including the outer side areas. Full dummy sled tests were conducted to confirm the simulation results. These results show that, for impacts at the outer sides of the vehicle, the head contact points are more rearward than at the vehicle center. In addition, the speed and angle of the head contact were found to be influenced by the pedestrian height.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号