首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  国内免费   1篇
安全科学   4篇
废物处理   1篇
环保管理   5篇
综合类   5篇
基础理论   6篇
污染及防治   13篇
评价与监测   6篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1984年   1篇
  1964年   1篇
排序方式: 共有40条查询结果,搜索用时 265 毫秒
21.
This paper reports the development of a thermo-physical model for die-sinking electric discharge machining (EDM) process using finite element method (FEM). Numerical analysis of the single spark operation of EDM process has been carried out considering the two-dimensional axi-symmetric process continuum. The analysis is based on more realistic assumptions such as Gaussian distribution of heat flux, spark radius equation based on discharge current and discharge duration, latent heat of melting, etc., to predict the shape of crater cavity and the material removal rate (MRR). Using the developed model, parametric studies were carried out to study the effect of EDM process parameters such as discharge current, discharge duration, discharge voltage and duty cycle on the process performance. Experimental studies were carried out to study the MRR and crater shapes produced during actual machining. When compared with the reported analytical models, our model was found to predict results closer to the experimental results. The thermo-physical model developed can further be used to carry out exhaustive studies on the EDM process to obtain optimal process conditions.  相似文献   
22.
This paper presents a model using fuzzy synthetic evaluation to estimate the methane generation rate constant, k, for landfills. Four major parameters, precipitation, temperature, waste composition and landfill depth were used as inputs to the model. Whereas, these parameters are known to impact the methane generation, mathematical relationships between them and the methane generation rate constant required to estimate methane generation in landfills, are not known. In addition, the spatial variations of k within a landfill combined with the necessity of site-specific information to estimate its value, makes k one of the most elusive parameters in the accurate prediction of methane generation within a landfill. In this paper, a fuzzy technique was used to develop a model to predict the methane generation rate constant. The model was calibrated and verified using k values from 42 locations. Data from 10 sites were used to calibrate the model and the rest were used to verify it. The model predictions are reasonably accurate. A sensitivity analysis was also conducted to investigate the effect of uncertainty in the input parameters on the generation rate constant.  相似文献   
23.
In a region that is highly sensitive to tectonic instability, the fragile nature of the Himalayas becomes further adversely affected by anthropogenic intervention. In the present study observations indicate that the landsliding process occurs along various tectonic zones where it is assisted by human activities. Bedding and joint plane dip slopes, high joint and joint set frequencies, low vegetation cover, high monsoonal rainfall, thin soil cover and anthropogenic activities were found to be the main causative factors of the landslides. Anthropogenic activities include local path, canal and road construction, mining and quarrying, overgrazing, deforestation and unscientific agricultural practices, such as tilling steeper slopes (>30) without contour benches and without provision of drainage ditches, and overcropping without giving rest to the overtaxed soils. Where slope conditions are critical human activities should be controlled so as to minimise the slope failure processes. Various recommendations are proposed.  相似文献   
24.
Trihalomethanes (THMs) the by-products of chlorination in water treatment are recognised as a threat to public health due to their carcinogenicity. The photodegradation of THMs using hydrogen peroxide has been found to give increased removal efficiency and the outcome of the study may find, its application in designing a unit process for water treatment. Batch experiments were carried out using UV lamp of 83 W and 40% w/w Hydrogen peroxide (H2O2) in test waters between 2.5–10 pH range of chloroform, bromodichloromethane, dibromochloromethane and bromoform at 50–200 μg L−1 initial concentration. 92–100% removal of chloroform, bromodichloromethane, dibromochloromethane and bromoform were found with 0.1% of H2O2 and 90 min of UV exposure.  相似文献   
25.
Sacred groves are well recognized in the world in terms of biodiversity conservation. The present study was conducted in the Nakuleshwar sacred grove, in the valley of Thal kedar hill in the Kumaon region of Pithoragarh district in Indian Himalaya, in appreciation of its role in biodiversity conservation. The study aimed at the documentation and inventory of the sacred grove, its phytodiversity, threats and conservation in the Himalayan region, and to achieve this, systematic field surveys were conducted during 2007?C2010 covering all four seasons. A total of 83 species from 71 genera and 50 families were identified, of which 43 species are flowering plants, including 7 trees, 7 shrubs, 4 climbers and 25 herbs, and 40 species are non-flowering plants of which lichens are represented by 12 species from 8 genera, bryophytes 6 species from 5 genera, and pteridophytes 7 species from 9 genera, while gymnosperms are represented by a single species. Acer oblongum, Cinnamomum tamala, Cedrus deodara, Coriaria nepalensis act as keystone species in the grove. Ophiopogon inermis is a common herb during the rainy season while Goodyera hemsleyana (Orchid) is a new distribution record for the western Himalaya. A total of 43 species from 38 genera are used ethnobotanically by local people for various ailments. Mahonia nepaulensis, Asparagus adscendens, Thalictrum foliolosum, Cinnamomum tamala and Berberis asiatica are highly exploited species and need to be conserved. Climatic conditions of the grove are moderate and the floristic patch of the grove is completely different from the plant diversity of the surrounding area and matches with the diversified floral wealth of comparatively higher altitudes. Due to anthropogenic pressure, this grove is facing new threats of degradation, hence needing special attention.  相似文献   
26.
A model to simulate gas, heat, and moisture transport through a sanitary landfill has been developed. The model not only considers the different processes that go on in a landfill but also the oxidation of methane in the final cover. The model was calibrated using published results and field data from a pilot scale landfill in Calgary. The model captures the physics of the different processes quite well. Simulations from the model show that waste permeability had a significant impact on the temperature, pressure distribution, and flux from a landfill. The presence of the final and intermediate covers enhanced the gas storage capacity of the landfill. Biodegradation of the waste was enhanced as the final cover minimized the atmospheric influences. In addition, the composition of landfill gas emitted to the atmosphere was significantly different from the composition of gas generated in landfill due to the presence of covers as some of the methane is oxidized to carbon dioxide. There was no significant benefit of using a final cover of higher depth. The presence and number of intermediate covers had an impact on gas flux and temperature distribution within a landfill.  相似文献   
27.
The importance of the size of raindrop in causing soil detachment and splash has long been recognized, although the total energy expended on erosion by splash may be small. The aggressiveness of rainfall or its capacity to cause detachment can be expressed in terms of drop size, rainfall intensity and kinetic energy or momentum. An attempt has been made to determine the rainfall erosivity (EI) of two gauged stations where continuous rainfall recorders were installed, on the basis of rainfall characteristics. Thus, the relationship between average storm EI30 (rainfall erosivity for 30 minutes interval) values and average depths of rainfall could be developed for the Bheta Gad basin of the Gomati River in the Hindu-Kush Himalayas. The analysis has revealed that if factors other than rainfall remain constant, soil splash erosion from cultivated fields is directly proportional to the rainstorm parameter identified as EI.  相似文献   
28.
The present study was performed to investigate the performance of activated carbon-supported copper and manganese base catalyst for catalytic wet oxidation (CWO) of pulping effluent. CWO reaction was performed in a high pressure reactor (capacity?=?0.7 l) at temperatures ranging from 120 to 190 °C and oxygen partial pressures of 0.5 to 0.9 MPa with the catalyst concentration of 3 g/l for 3 h duration. With Cu/Mn/AC catalyst at 190 °C temperature and 0.9 MPa oxygen partial pressures, the maximum chemical oxygen demand (COD), total organic carbon (TOC), lignin, and color removals of 73, 71, 86, and 85 %, respectively, were achieved compared to only 52, 51, 53, and 54 % removals during the non-catalytic process. Biodegradability (in terms of 5-day biochemical oxygen demand (BOD5) to COD ratio) of the pulping effluent was improved to 0.38 from an initial value of 0.16 after the catalytic reaction. The adsorbed carbonaceous fraction on the used catalyst was also determined which contributed meager TOC reduction of 3–4 %. The leaching test showed dissolution of the metals (i.e., Cu and Mn) from the catalysts in the wastewater during CWO reaction at 190 °C temperature and 0.9 MPa oxygen partial pressures. In the future, the investigations should focus on the catalyst reusability.  相似文献   
29.
Wet-air oxidation of diluted black liquor (chemical oxygen demand [COD] approximately 3250 to 14 500 mg/L) was performed at mild operating conditions (temperature = 388 to 423 K and total pressure = 0.6 MPa) in the presence of heterogeneous 60% copper oxide (CuO)/ 40% cerium oxide (CeO2) catalyst. Maximum COD reduction of 77.3% was obtained at 423 K at pH 3.0, which was marginally higher than that obtained at 413 K temperature (77.1%). In the acidic environment (pH < or = 3), most of the COD was removed in the form of settleable solids during the transient heating of the wastewater from room temperature to the desired one. The solid residue obtained after the reaction has a heating value of 20.1 MJ/kg, which is comparable with that of Indian coal. Thermal degradation kinetic determination suggested that thermal characteristics of the solid residue are well represented by a power law model with Agarwal and Sivasubramanian approximation (Safi et al., 2004).  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号