首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3537篇
  免费   60篇
  国内免费   33篇
安全科学   203篇
废物处理   116篇
环保管理   945篇
综合类   323篇
基础理论   864篇
环境理论   7篇
污染及防治   788篇
评价与监测   224篇
社会与环境   130篇
灾害及防治   30篇
  2023年   14篇
  2022年   23篇
  2021年   27篇
  2020年   26篇
  2019年   35篇
  2018年   43篇
  2017年   64篇
  2016年   83篇
  2015年   72篇
  2014年   75篇
  2013年   446篇
  2012年   132篇
  2011年   175篇
  2010年   117篇
  2009年   132篇
  2008年   156篇
  2007年   194篇
  2006年   136篇
  2005年   118篇
  2004年   124篇
  2003年   127篇
  2002年   108篇
  2001年   63篇
  2000年   79篇
  1999年   49篇
  1998年   56篇
  1997年   44篇
  1996年   61篇
  1995年   57篇
  1994年   64篇
  1993年   52篇
  1992年   47篇
  1991年   39篇
  1990年   39篇
  1989年   31篇
  1988年   40篇
  1987年   30篇
  1986年   36篇
  1985年   33篇
  1984年   30篇
  1983年   37篇
  1982年   48篇
  1981年   47篇
  1980年   25篇
  1979年   28篇
  1978年   25篇
  1977年   29篇
  1976年   13篇
  1974年   10篇
  1972年   11篇
排序方式: 共有3630条查询结果,搜索用时 31 毫秒
251.
Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O3 that (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant detoxification and repair. In this paper, we discuss the linkage of the temporal variability of apoplastic ascorbate with the diurnal variability of defense mechanisms in plants and compare this variability with daily maximum O3 concentration and diurnal uptake and entry of O3 into the plant through stomata. We describe the quantitative evidence on temporal variability in concentration and uptake and find that the time incidence for maximum defense does not necessarily match diurnal patterns for maximum O3 concentration or maximum uptake. We suggest that the observed out-of-phase association of the diurnal patterns for the above three processes produces a nonlinear relationship that results in a greater response from the higher hourly average O3 concentrations than from the lower or mid-level values. The fact that these out-of-phase processes affect the relationship between O3 exposure/dose and vegetation effects ultimately impact the ability of flux-based indices to predict vegetation effects accurately for purposes of standard setting and critical levels. Based on the quantitative aspect of temporal variability identified in this paper, we suggest that the inclusion of a diurnal pattern for detoxification in effective flux-based models would improve the predictive characteristics of the models. While much of the current information has been obtained using high O3 exposures, future research results derived from laboratory biochemical experiments that use short but elevated O3 exposures should be combined with experimental results that use ambient-type exposures over longer periods of time. It is anticipated that improved understanding will come from future research focused on diurnal variability in plant defense mechanisms and their relationship to the diurnal variability in ambient O3 concentration and stomatal conductance. This should result in more reliable O3 exposure standards and critical levels.  相似文献   
252.
We investigated the effects of human trampling on boreal forest understory vegetation on, and off paths from suburban forest edges towards the interiors and on the likelihood of trampling-aided dispersal into the forests for three years by carrying out a trampling experiment. We showed that the vegetation was highly sensitive to trampling. Even low levels of trampling considerably decreased covers of the most abundant species on the paths. Cover decreased between 10 and 30% on paths which had been trampled 35 times, and at least by 50% on those trampled 70–270 times. On-path vegetation cover decreased similarly at forest edges and in the interiors. However, some open habitat plant species that occurred outside the forest patches and at forest edges dispersed into the forests, possibly through the action of trampling. A higher cover percentage of an open habitat species at the forest edge line increased its probability to disperse into the forest interior. The vegetation community on, next to, and away from lightly trampled paths remained the same throughout the trampling experiment. For heavily trampled paths, the community changed drastically on the paths, but stayed relatively similar next to and away from the paths. As boreal vegetation is highly sensitive to the effects of trampling, overall ease of access throughout the forest floor should be restricted to avoid the excessive creation of spontaneous paths. To minimize the effects of trampling, recreational use could be guided to the maintained path network in heavily used areas.  相似文献   
253.
Under the first Federal Air Pollution Act of 1955, which assigned the responsibility for developing a national program to the Public Health Service, a significant phase of the program involved other federal agencies through a series of contractual relationships. These interdepartmental relationships were limited however, to the objective of capitalizing on the diverse research facilities and specialized competencies within the federal establishment, as a means of accelerating the research and technical assistance program authorized under the act. With the passage of the Clean Air Act of 1963, a major new emphasis has been added to the federal air pollution control program—application of technical knowledge, through broadly accelerated control programs. This emphasis is reflected in current trends in the nature and type of the Public Health Service’s developing relationships with other federal agencies. The emerging PHS programs to prevent and control air pollution from federal facilities, the PHS role in preventing pollution arising from transportation systems aided under the new Urban Mass Transportation Act, and other developing interagency relationships and problem areas are discussed in this context.  相似文献   
254.
Disturbance regime is a critical organizing feature of stream communities and ecosystems. The position of a given reach in the river basin and the sediment type within that reach are two key determinants of the frequency and intensity of flow-induced disturbances. We distinguish between predictable and unpredictable events and suggest that predictable discharge events are not disturbances. We relate the dynamics of recovery from disturbance (i.e., resilience) to disturbance regime (i.e., the disturbance history of the site). The most frequently and predictably disturbed sites can be expected to demonstrate the highest resilience. Spatial scale is an important dimension of community structure, dynamics, and recovery from disturbance. We compare the effects on small patches (⩽1 m2) to the effects of large reaches at the river basin level. At small scales, sediment movements and scour are major factors affecting the distribution of populations of aquatic insects or algae. At larger scales, we must deal with channel formation, bank erosion, and interactions with the riparian zone that will affect all taxa and processes. Our understanding of stream ecosystem recovery rests on our grasp of the historical, spatial, and temporal background of contemporary disturbance events.  相似文献   
255.
Assessing ecological risk on a regional scale   总被引:17,自引:0,他引:17  
Society needs a quantitative and systematic way to estimate and compare the impacts of environmental problems that affect large geographic areas. This paper presents an approach for regional risk assessment that combines regional assessment methods and landscape ecology theory with an existing framework for ecological risk assessment. Risk assessment evaluates the effects of an environmental change on a valued natural resource and interprets the significance of those effects in light of the uncertainties identified in each component of the assessment process. Unique and important issues for regional risk assessment are emphasized; these include the definition of the disturbance scenario, the assessment boundary definition, and the spatial heterogeneity of the landscape. Although the research described in this article has been funded wholly or in part by the United States Environmental Protection Agency (EPA) through Interagency Agreement Number DW89932112-01-2 to the U.S. Department of Energy, it has not been subjected to EPA review and therefore does not necessarily reflect the views of EPA and no official endorsement should be inferred.  相似文献   
256.
ABSTRACT: Although our current (1990) knowledge of hydrologic and hydraulic processes is based on many years of study, there are river environments where these processes are complex and poorly understood. One of these environments is in mountainous areas, which cover about 25 percent of the United States. Use of conventional hydrologic and hydraulic techniques in mountain-river environments may produce erroneous results and interpretations in a wide spectrum of water-resources investigations. An ongoing U.S. Geological Survey research project is being conducted to improve the understanding of hydrologic and hydraulic processes of mountainous areas and to improve the results of subsequent hydrologic investigations. Future hydrologic and hydraulic research needs in mountainous areas are identified.  相似文献   
257.
258.
Long-term depletion of calcium and other nutrients in eastern US forests   总被引:10,自引:0,他引:10  
Both harvest removal and leaching losses can deplete nutrient capital in forests, but their combined long-term effects have not been assessed previously. We estimated changes in total soil and biomass N, Ca, K, Mg, and P over 120 years from published data for a spruce-fir site in Maine, two northern hardwood sites in New Hampshire, central hardwood sites in Connecticut and Tennessee, and a loblolly pine site in Tennessee. For N, atmospheric inputs counterbalance the outputs, and there is little long-term change on most sites. For K, Mg, and P, the total pool may decrease by 2%–10% in 120 years depending on site and harvest intensity. For Ca, net leaching loss is 4–16 kg/ha/yr in mature forests, and whole-tree harvest removes 200–1100 kg/ha. Such leaching loss and harvest removal could reduce total soil and biomass Ca by 20%–60% in only 120 years. We estimated unmeasured Ca inputs from rock breakdown, root-zone deepening, and dry deposition; these should not be expected to make up the Ca deficit. Acid precipitation may be the cause of current high leaching of Ca. Although Ca deficiency does not generally occur now in acid forest soils, it seems likely if anthropogenic leaching and intensive harvest removal continue.  相似文献   
259.
The climate simulations from atmospheric general circulation models (GCMs) are often used to analyze the potential effects of climate change on environmental resources. It has been demonstrated that there are differences among the simulations from various GCMs, on spatial scales ranging from global to regional. This paper quantifies the differences in temperature and precipitation simulated by three major GCMs for four specific regions: an agricultural region (the North American winter wheat belt), a hydrologic region (the Great Basin), a demographic region (the high-density population corridor of the northeast United States), and a political region (the state of Texas). Both the current (control) climate and the climatic response to a doubling of atmospheric carbon dioxide (CO2) are consideredIn each region, even when the data are averaged on a seasonal basis, marked differences occurred in the areal average climate simulated by the different GCMs for both the control climate and the doubled-CO2 climate. Thus, climate impact studies based on the simulations of more than one GCM could easily yield a range of possible results  相似文献   
260.
The U.S. Environmental Protection Agency has developed regulations under the Hazardous and Solid Waste Amendments (HSWA) of 1984 to restrict the land disposal of hazardous wastes. As a result of the regulations, all hazardous wastes to be placed on the land must meet treatment standards based on the performance of the best demonstrated available technology (BDAT) identified for individual waste classifications. The Marathon Oil Company is currently evaluating innovative technologies for managing listed waste materials, with a focus on waste minimization and recycling. Remediation Technologies, Inc. (ReTeC) has conducted testing on wastewater treatment sludges from three Marathon refineries using a proprietary thermal desorption technology. The results from these tests have demonstrated that the technology has the ability to consistently meet BDAT treatment standards, while preferentially separating and condensing residual moisture and oils from the material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号