首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9961篇
  免费   114篇
  国内免费   93篇
安全科学   287篇
废物处理   461篇
环保管理   1254篇
综合类   1240篇
基础理论   2699篇
环境理论   2篇
污染及防治   2794篇
评价与监测   712篇
社会与环境   671篇
灾害及防治   48篇
  2022年   100篇
  2021年   77篇
  2020年   65篇
  2019年   72篇
  2018年   146篇
  2017年   141篇
  2016年   233篇
  2015年   169篇
  2014年   240篇
  2013年   754篇
  2012年   300篇
  2011年   442篇
  2010年   365篇
  2009年   397篇
  2008年   473篇
  2007年   481篇
  2006年   424篇
  2005年   370篇
  2004年   326篇
  2003年   378篇
  2002年   325篇
  2001年   503篇
  2000年   333篇
  1999年   192篇
  1998年   139篇
  1997年   133篇
  1996年   139篇
  1995年   165篇
  1994年   128篇
  1993年   104篇
  1992年   126篇
  1991年   120篇
  1990年   130篇
  1989年   133篇
  1988年   96篇
  1987年   90篇
  1986年   67篇
  1985年   93篇
  1984年   90篇
  1983年   90篇
  1982年   82篇
  1981年   75篇
  1980年   63篇
  1979年   69篇
  1977年   54篇
  1976年   50篇
  1975年   56篇
  1974年   52篇
  1973年   54篇
  1970年   47篇
排序方式: 共有10000条查询结果,搜索用时 54 毫秒
701.
702.
703.
704.
Even though the Selenga is the main tributary to Lake Baikal in Russia, the largest part of the Selenga River basin is located in Mongolia. It covers a region that is highly diverse, ranging from almost virgin mountain zones to densely urbanized areas and mining zones. These contrasts have a strong impact on rivers and their ecosystems. Based on two sampling campaigns (summer 2014, spring 2015), we investigated the longitudinal water quality pattern along the Selenga and its tributaries in Mongolia. While headwater regions typically had a very good water quality status, wastewater from urban areas and impacts from mining were found to be main pollution sources in the tributaries. The highest nutrient concentrations in the catchment were found in Tuul River, and severely elevated concentrations of trace elements (As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn), nutrients (NH4 +, NO2 ?, NO3 ?, PO4 3?), and selected major ions (SO4 2?) were found in main tributaries of Selenga River. Moreover, trace element concentrations during spring 2015 (a time when many mines had not yet started operation) were markedly lower than in summer 2014, indicating that the additional metal loads measured in summer 2014 were related to mining activities. Nevertheless, all taken water samples in 2014 and 2015 from the main channel of the Mongolian Selenga River complied with the Mongolian standard (MNS 1998) for the investigated parameters.  相似文献   
705.
Wybong Creek discharges salts into the agriculturally and industrially important Hunter River in New South Wales, Australia. Abrupt increases in salinity occur periodically in the mid-Wybong Creek catchment. In order to understand the processes which cause these abrupt increases, changes in surface and groundwater were investigated. It is shown that salinity increases can be attributed to highly discrete groundwater discharge directly into the river from below. Hourly electrical conductivity data measured in the river showed regular, diurnal electrical conductivity fluctuations of up to 350 μS cm?1. These fluctuations could not be attributed to barometric pressure, temperature, or evapotranspiration. Instead, a similar periodicity in surface water electrical conductivity and groundwater height in nearby groundwater wells was found. Fluctuations were of similar periodicity to the orthotides which cause fluctuations in surface water height and are induced by Earth tides. The geology in the mid-catchment area indicates conditions are optimal for Earth tides to impact groundwater. The reporting of orthotidal changes in water chemistry in this article is believed to be the first of its kind in the scientific literature, with the large fluctuations noted having important implications for water monitoring and management in the catchment. Further research investigating Earth-tide-induced phases of groundwater heights will better constrain the relationships between surface water chemistry and groundwater height.  相似文献   
706.
The growing population number and traffic loads, increasing environmental pressures, agricultural intensification, and the establishment of Mount Cameroon National Park demand farsighted environmental management in the region and the definition of a favorable ecological status. Since plants grow in the interface between soils and the atmosphere they can be used as passive biomonitors for the environmental quality. At the same time, the accumulation of nutrients and pollutants in crops is linked to human health, so that foliar elemental levels can be used as an integrative measure for environmental pollution and impact assessment. In the present study, we collected leaf samples of plantain, cassava, cocoyam, and maize on 28 sites at the southern flanks of Mt. Cameroon and determined 20 chemical elements. Air pollution in the study area comes from biomass and waste burning mainly, but emissions from traffic and a large refinery were believed to also play a significant role. However, spatial patterns in foliar elemental concentrations reflected the geochemistry rather than specific sources of pollution. Significant differences in foliar metal and nutrient levels were observed between the four species, indicating a different demand and uptake of specific elements. The results were compared to published data on nutrient concentrations in the tested species and the so-called reference plant. The data can be used as a baseline for future studies in plant nutrition and the environmental monitoring in inner tropical regions where these crops are grown.  相似文献   
707.
El Niño, an interannual climate event characterized by elevated oceanic temperature, is a prime threat for coral reef ecosystems worldwide, owing to their thermal threshold sensitivity. Phytoplankton plays a crucial role in the sustenance of reef trophodynamics. The cell size of the phytoplankton forms the “master morphological trait” with implications for growth, resource acquisition, and adaptability to nutrients. In the context of a strong El Niño prediction for 2015–2016, the present study was undertaken to evaluate the variations in the size-structured phytoplankton of Kavaratti reef waters, a major coral atoll along the southeast coast of India. The present study witnessed a remarkable change in the physicochemical environment of the reef water and massive coral bleaching with the progression of El Niño 2015–2016 from its peak to waning phase. The fluctuations observed in sea surface temperature, pH, and nutrient concentration of the reef water with the El Niño progression resulted in a remarkable shift in phytoplankton size structure, abundance, and community composition of the reef waters. Though low nutrient concentration of the waning phase resulted in lower phytoplankton biomass and abundance, the diazotroph Trichodesmium erythraeum predominated the reef waters, owing to its capability of the atmospheric nitrogen fixation and dissolved organic phosphate utilization.  相似文献   
708.
The relative grazing impact of Noctiluca scintillans (hereafter referred only Noctiluca) and copepods (Acrocalanus gracilis, Paracalanus parvus, Acartia danae and Oithona similis) on the phytoplankton community in an upwelling–mudbank environment along the southwest coast India is presented here. This study was carried out during the Pre-Southwest Monsoon (April–May) to the Late Southwest Monsoon (August) period in 2014. During the sampling period, large hydrographical transformation was evident in the study area (off Alappuzha, Southwest coast of India); warmer Pre-Southwest Monsoon water column condition got transformed into cooler and nitrate-rich hypoxic waters during the Southwest Monsoon (June–August) due to intense coastal upwelling. Copepods were present in the study area throughout the sampling period with a noticeable increase in their abundance during the Southwest Monsoon. On the other hand, the first appearance of Noctiluca in the sampling location was during the Early Southwest Monsoon (mid-June) and thereafter their abundance increased towards the Peak Southwest Monsoon. The grazing experiments carried out as per the food removal method showed noticeable differences in the feeding preferences of Noctiluca and copepods, especially on the different size fractions of phytoplankton. Noctiluca showed the highest positive electivity for the phytoplankton micro-fraction (av. 0.49 ± 0.04), followed by nano-fraction (av. 0.17 ± 0.04) and a negative electivity for the pico-fraction (av. ?0.66 ± 0.06). In total ingestion of Noctiluca, micro-fraction contribution (83.7%) was significantly higher compared to the nano- (15.7%) and pico-fractions (0.58%). On the other hand, copepods showed the highest positive electivity for the phytoplankton nano-fraction (av. 0.38 ± 0.04) followed by micro- (av. -0.17 ± 0.05) and pico-fractions (av. ?0.35 ± 0.05). Similarly, in total ingestion of copepods, nano-fraction (69.7%) was the highest followed by micro- (28.9%) and pico-fractions (1.37%). The grazing pressure of Noctiluca on the total phytoplankton was found to be 27.7% of the standing stock and 45.6% of the production, whereas in the case of copepods, it was 9.95% of the standing stock and 16.6% of the production. The study showed that the grazing pressure of Noctiluca on the total phytoplankton as well as larger phytoplankton fraction was 2.8- and 8-folds higher than that of the copepods. This suggests the leading role of Noctiluca as an effective grazer of larger phytoplankton along the southwest west coast of India, especially during the Peak/Late Southwest Monsoon.  相似文献   
709.
This paper demonstrates the ability of Polish agriculture to adapt to predicted climate change according to GISS and GFDL scenarios. Both climate-change scenarios will significantly affect farming conditions in Poland through water deficit, shifts in planting and harvesting seasons, changes in crop yields and crop structure. Neither scenario seems to endanger the self-sufficiency of Poland as long as preventative measures are taken. Moreover, the realization of GISS creates the possibility of a surplus in production. It must be emphasized that regardless of the scenario, the adaptation of agriculture to an expected climate change cannot be handled by the farming community itself.  相似文献   
710.
This paper gives mathematical details and sample applications of SWAGMAN Farm (SWAGMAN, Salt Water and Groundwater Management), a farm-scale hydrologic economic model that integrates agronomic, climatic, irrigation, hydrogeological and economic aspects of irrigated agriculture. The model is capable of determining optimum mix of land use to keep watertable and soil salinity within acceptable limits while maximising the economic returns. Alternatively, the model can simulate water and salt balance and economics of a given cropping preference. Web-based and Geographic Information Systems versions of the model are available for integration with the environmental reporting systems of the irrigation areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号