首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   1篇
安全科学   5篇
废物处理   3篇
环保管理   14篇
综合类   8篇
基础理论   15篇
污染及防治   25篇
评价与监测   4篇
社会与环境   1篇
灾害及防治   3篇
  2021年   1篇
  2018年   5篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   11篇
  2011年   3篇
  2010年   2篇
  2008年   4篇
  2007年   9篇
  2006年   5篇
  2003年   2篇
  2002年   3篇
  2000年   3篇
  1998年   5篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   3篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
71.
Optimal conditions for bioremediation of investigation‐derived wastes from petroleum‐impacted soils (PIS) were determined through biotreatability experiments. The PIS was collected as extruded cores obtained during sample drilling. These samples were processed into workable media prior to treatment in bioreactors. Soil moisture content in the bioreactors was adjusted to 30 percent, 40 percent, 50 percent (control), and 60 percent, dry‐weight basis, and nutrient levels were adjusted by applying fertilizer, yielding carbon (C) to nitrogen (N) ratios of 20:1, 10:1, and 5:1, versus a control C:N ratio of 140:1. Temperature, pH, viable bacterial plate counts, contaminant degradation rate, and microbial respiration were monitored. Concentrations of three selected branched alkanes in the aviation fuel contaminant, measured by gas chromatography, decreased for most treatments. The greatest degradation occurred with a moisture content of 40 percent and C:N ratio of 5:1. Increased contaminant degradation was consistent with increased microbial activity measured by respiration. There was poorer correlation between contaminant degradation and viable plate counts, which suggests that respirometry is a better measure of activity of the microbial population responsible for contaminant degradation. General plate counts, which enumerate only a fraction of the total population, may not be a reliable quantitative indicator of the actual microorganism population that is responsible for degradation. © 2003 Wiley Periodicals, Inc.  相似文献   
72.
73.
74.
The purpose of this study was to assess the oral bioavailability of lead in soil collected from a former smelter site in Sandy, Utah, USA. Sprague-Dawley rats (approximately 4 weeks of age, 5 of each sex in group) were given either soil lead or lead acetate mixed in a purified diet (AIN-93G ) at four different concentrations for 31 consecutive days. Food consumption measurements were used to compute mean daily lead exposures for the soil lead and lead acetate groups. The lead acetate treatment yielded higher concentrations of lead in the blood and bone than the soil lead treatment. Mean blood lead values ranged from below the detection limit (3 g dL–1) to 27.25 g lead dL–1 for the lead acetate groups at dose levels of 0.10–2.91 mg lead kg body weight–1 and from below the detection limit to 8.8 g lead dL–1 for the soil lead groups at doses of 0.11–3.43 mg lead kg body weight–1. At these same doses, mean bone values ranged from 0.52 to 26.92 g lead g–1 for the lead acetate groups and from 0.64 to 13.1 g lead g–1 for the soil lead groups. Relative per cent bioavailability was estimated by modelling the dose-blood concentration curves for the lead acetate treatment and the dosed soil lead treatment, and then comparing doses that produce an equivalent blood lead concentration. The ratio of the doses of lead acetate and soil lead that produced the same tissue response (i.e., concentration) provided an index of relative bioavailability. For lead, the bioavailability of soil lead relative to lead acetate was 41% at a blood concentration of 6 g lead dL–1.  相似文献   
75.
Bioavailability often controls the fate of organic contaminants in surface and subsurface aquatic environments. Bioavailability can be limited by sorption, mass transfer, and intrinsic biodegradation potential and can be further altered by the presence of other compounds. This paper reviews current perspectives on the processes influencing subsurface contaminant bioavailability, how these processes are modeled, and how the relative role of the various processes can be assessed through bioavailability indices. Although these processes are increasingly well understood, the use of sophisticated models and indices often are precluded by an inability to estimate the many parameters that are associated with complex models. Nonetheless, the proper representation of sorption, mass transfer, biodegradation, and co-solute effects can be critical in predicting bio-attenuation. The influence of these processes on contaminant fate is illustrated with numerical simulations for the simultaneous degradation of toluene (growth substrate) and trichloroethylene (nongrowth cometabolite) in hypothetical, aerobic, solid-water systems. The results show how the relative impacts on contaminant fate of the model's various component processes depends upon system conditions, including co-solute concentrations. Slow biodegradation rates increase the inhibition effects of a cometabolite and suppress the rate enhancement effects of a growth substrate. Irrespective of co-solute effects, contaminant fate is less sensitive to biodegradation processes in systems with strong sorption and slow desorption rates. Bioavailability indices can be used to relate these findings and to help identify appropriate modeling simplifications. In general, however, there remains a need to redefine such indices in order that bioavailability concepts can be better incorporated into site characterization, remediation design, and regulatory oversight.  相似文献   
76.
Coniferous trees of different species, or of the same species growing at different locations, vary in the extent to which they are attacked by various herbivores and pathogens. Plant secondary metabolites might be a key to understanding some of this variation. At the site level, we investigated if there was an intra- or interspecies pattern for individual compounds (or for groups of compounds) and their relationship to indices of plant nitrogen and plant productivity. For example, do plants exhibit similar covariance in defence compounds when evaluated across a number of sites varying in productivity? Here, we concentrated on the phenolic profile of Pinus sylvestris, Picea abies, Juniperus communis and Pinus contorta. Our results indicate striking differences in secondary chemistry profiles of the twigs including needles of the trees and in the inter-relationships amongst individual compounds and groups of compounds. Flavonols occurred in high variety in P. sylvestris and were highly correlated with each other, differing from P. contorta. But the results of the factor analyses indicate an underlying pattern for flavonols of the coumaroyl type for P. contorta. In contrast, the compounds of the other tree species showed a low degree of inter-correlation. Co-occurring phenolics of different tree species were not correlated. Overall, our analysis of site indices indicated that plant productivity was not a useful predictor for the concentration of specific phenolics. The relationship amongst plant nitrogen and specific phenolics might be the result of two defence strategies (one related and the other not related to nitrogen content). This might enable the plant to shift its defences against attacks with a high degree of flexibility.  相似文献   
77.
The Science of Nature -  相似文献   
78.
In pursuit of socioeconomic development, many countries are expanding oil and mineral extraction into tropical forests. These activities seed access to remote, biologically rich areas, thereby endangering global biodiversity. We examined how protection of biodiversity and economic revenues can be balanced in biologically valuable regions. Using spatial data on oil profits and predicted species and ecosystem extents, we optimized the protection of 741 terrestrial species and 20 ecosystems of the Ecuadorian Amazon across a range of opportunity costs (i.e., sacrifices of extractive profit). We also applied spatial statistics to remotely sensed, historic deforestation data to focus the optimization on areas most threatened by imminent forest loss. Giving up 5% of a year's oil profits (US$221 million) allowed for a protected area network that retained an average of 65% of the extent of each species and ecosystem. This performance far exceeded that of the network produced by simple optimization for land area (which required a sacrifice of approximately 40% of annual oil profits [US$1.7 billion]) and used only marginally less land to achieve equivalent levels of ecological protection. We identified what we call emergency conservation targets: regions that are essential components of a cost-effective conservation reserve network but at imminent risk of destruction, thus requiring urgent and effective protection. Governments can use our methods when evaluating extractive-led development options to responsibly manage the associated ecological and economic trade-offs and protect natural capital.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号