首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   0篇
  国内免费   5篇
安全科学   6篇
废物处理   25篇
环保管理   13篇
综合类   16篇
基础理论   12篇
污染及防治   31篇
评价与监测   2篇
社会与环境   5篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   5篇
  2013年   8篇
  2012年   5篇
  2011年   6篇
  2010年   10篇
  2009年   8篇
  2008年   9篇
  2007年   10篇
  2006年   2篇
  2005年   3篇
  2004年   7篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有110条查询结果,搜索用时 437 毫秒
41.
Jo WK  Seo YJ 《Chemosphere》2005,61(11):1570-1579
One major deficiency in linking environmental exposure to health effects is the current lack of data on environmental exposure. Therefore, to address this issue, the present study measured the bacterial and fungal concentrations in the indoor and outdoor air from two types of recreation facility (42 bars and 41 Internet cafes), 44 classrooms at 11 elementary schools, and 20 homes under uncontrolled environmental conditions during both summer and winter. No major environmental problems were reported at the four microenvironments being investigated during the entire study period. Bacteria and fungi were found in all the air samples, and the environmental occurrence of individual fungi was in the order of Cladosprium, Penicillium, Aspergillus, and Alternaria. The six parameters surveyed in the present study were all found to influence the indoor and outdoor bioaerosol levels: microenvironment type, sampling time in elementary school classrooms, agar type for measuring the fungal species, seasonal variation, facility location, and summer survey periods. The indoor and outdoor air concentrations of bacteria and fungi found in this study were comparable to those in other reports, with GM values for the total bacteria and total fungi between 10 and 103 colony-forming units per cubic meter of air (CFU m−3). The fungal concentrations found at most of the indoor environments fell within the specified guidelines of the American Conference of Government Industrial Hygienists (ACGIH), between 100 and 1000 CFU m−3 for the total fungi. However, the indoor bioaerosol concentrations at most of the surveyed environments exceeded the Korean indoor bioaerosol guideline (800 CFU m−3). Consequently, the current findings suggest the need for reducing strategy for indoor microorganisms at the surveyed microenvironments.  相似文献   
42.
In vitro digestibility of 10 polymers was studied. Only starch, starch blend, gelatin, and silk were more than 10% digested by the enzyme cocktail. Cellophane, polyhydroxy--valerate, pullulan, levan, shellac, ethylene vinyl alcohol, and polyethylene were less than 10% digestible. The implications from these data are that these materials would act physiologically as dietary fiber or residue.Paper presented at the Biodegradable Materials and Packaging Conference, September 22–23, 1993, Natick, Massachusetts.  相似文献   
43.
The coastal waters at many beaches in California and the United States are afflicted with fecal pollution, which poses a health risk for people exposed to the water through recreational activities such as swimming, surfing, and diving. Identifying sources of pollution is complicated by oceanographic transport/mixing processes and the nonconservative behavior of microorganisms exposed to sunlight and hostile marine conditions. This article investigates the variation of fecal indicator bacteria (FIB) concentrations in the surf zone and the adjacent coastal marsh by applying autocorrelation and cross-correlation analyses that illustrate solar and tidal modulations. A steady state bioreactor model was developed to explain solar inactivation in the surf zone, whereas a dynamic model was applied to explain tidally influenced disturbances in the coastal marsh. These models applied to intensive monitoring datasets on FIB and environmental variables have provided insights into the biologic and physical processes controlling coastal water quality, specifically the influence of sunlight and tides on bacterial levels.  相似文献   
44.
The aim of this study was to isolate and characterize Bacillus cereus bacteriophages of various origins. Twenty-seven bacteriophages against B. cereus were isolated from various Korean traditional fermented foods and soils. Plaque size, transmission electron microscopy, virulence profile, and in vitro lytic activity of bacteriophage isolates were examined. Transmission electron microscopy confirmed B. cereus bacteriophages belonging to the family Siphoviridae. Among B. cereus bacteriophages with broad host range, 18 isolates (66.7%) did not harbor any B. cereus virulence factors. Among them, bacteriophage strain CAU150036, CAU150038, CAU150058, CAU150064, CAU150065, and CAU150066 effectively inhibited B. cereus in vitro within 1 h. Therefore, they are considered potential candidates for controlling the contamination of B. cereus in food or other applications.  相似文献   
45.
Noroviruses are major causative pathogen of nonbacterial acute gastroenteritis worldwide. Of the seven genogroups of noroviruses suggested recently, genogroup II genotype 4 (GII.4) had been the most common genotype identified in hospitalized patients in the last few decades. However, since the latter half of 2014, new variants of GII.17 have been reported as the main causes of outbreaks over GII.4 in East Asia and have also occurred in America and Europe. In this study, we monitored norovirus GII in coastal streams at South Gyeongsang province and South Jeolla province of South Korea from March 2015 to May 2016. Norovirus GII.17 capsid sequences were predominantly detected until September 2015 in water samples. However, we found that the number of positive cases of the norovirus GII.4 Sydney 2012 capsid sequence has been increasing since December 2015, overtaking that of GII.17 in 2016. The RdRp genotype of this predominant GII.4 variant in 2016 was identified as GII.P16. The emergence and predominance of the GII.4 pandemic capsid sequence harboring a different RdRp genotype suggested the potential for a future pandemic.  相似文献   
46.
Elemental mercury(Hg0) is predominant constituent of flue gas emitted from coal-fired power plants. Adsorption has been considered the best available technology for removal of Hg0 from flue gas. However, adsorbent injection increases the amount of ash generated. In the present study, powdered activated carbon(PAC) was coated on polytetrafluoroethylene/glass fiber filters to increase Hg0 removal while concurrently reducing the amount of ash generated. The optimal PAC coating rate was determined in laboratory experiments to ensure better Hg0 removal with low pressure drop. When PAC of particle size less than 45 μm was used, and the areal density was 50 g/m2, the pressure drop remained under 30 Pa while the Hg0 removal efficiency increased to 15.8% from4.3%. The Hg0 removal efficiency also increased with decrease in filtration velocity. The optimal PAC coating rate was applied on a hybrid filter(HF), which was combined with a bag filter and an electrostatic precipitator in a single chamber. Originally designed to remove fine particulates matter, it was retrofitted to the flue gas control device for simultaneous Hg0 removal. By employing the PAC coating, the Hg removal efficiency of the HF increased to 79.79% from 66.35%. Also, a temporary reduction in Hg removal was seen but this was resolved following a cleaning cycle in which the dust layer was removed.  相似文献   
47.
For designing an efficient circulating fluidized bed reactor, understanding the complex hydrodynamic characteristics in the reactor is required. Hence, in the present study, the modeling and simulation of the circulating fluidized bed gasifier using plastic waste were carried out with Eulerian-Granular approach. Several cases were investigated as changing superficial gas velocities or sizes of plastic waste particle. Firstly, cases were examined with four different velocities when the particle diameter is 1 mm. At the gas velocity of 6 or 8 m/s, gas volume fraction is more than 95 % throughout the reactor and particle velocity has positive value overall. Therefore, a circulating fluidized bed seems to be formed in both cases. Comparing those two cases, better solid mixing can be expected considering the mass fraction and solid velocity at the superficial gas velocity of 6 m/s. Thus this case was further studied for the effect of particle size. As the diameters of plastic waste particle are 1 or 3 mm, it is considered that a circulating fluidized bed is formed. And plastic waste and sand particles are well mixed throughout the reactor. However, the particle diameter increases over 3 mm then, it is very hard to maintain circulating fluidization condition.  相似文献   
48.
ABSTRACT: The non-Fickian nature of the longitudinal dispersion in natural channels during low flow has been investigated using both laboratory experiments and the numerical solution of the proposed mathematical model which is based on a set of mass balance equations describing the dispersion and mass exchange mechanisms. Laboratory experiments, which involved collection of channel geometry, hydraulic, and dye dispersion test data, were conducted to obtain sets of experimental data on a model of four pool and riffle sequences in a 161-ft long tilting flume in the Hydrosystems Laboratory at the University of Illinois at Urbana-Champaign. The experimental results indicate that flow over the model pool-riffle sequences is highly nonuniform. Concentration-time curves are significantly skewed with long tails. The mixing and dispersion in the laboratory channel was simulated using a numerical solution of the mathematical model in which the finite difference method developed by Stone and Brian (1963) was used as a solution technique. The comparison between measured and predicted concentration-time curves shows that there is a good level of agreement in the general shape, peak concentration, and time to peak. The proposed model shows significant improvement over the conventional Fickian model in predicting dispersion processes in natural channels under low flow conditions.  相似文献   
49.
Tool wear in micro-milling poses a serious limitation to increased production rate, and atomized cutting fluids have been shown to be quite effective in increasing tool life in micro-milling operations. A new compact cutting fluid application system has been designed and developed based on ultrasonic atomization. In order to understand the effects of the system input parameters on system performance, two performance measures have been defined in terms of spray characteristics and experiments have been performed to evaluate the system according to the defined performance measures. Based on the experimental results, the system parameters can be adjusted to obtain the desired spray characteristics, and areas of improvement on the design have been identified.  相似文献   
50.
● Definition of emerging contaminants in drinking water is introduced. ● SERS and standard methods for emerging contaminant analysis are compared. ● Enhancement factor and accessibility of SERS hot spots are equally important. ● SERS sensors should be tailored according to emerging contaminant properties. ● Challenges to meet drinking water regulatory guidelines are discussed. Emerging contaminants (ECs) in drinking water pose threats to public health due to their environmental prevalence and potential toxicity. The occurrence of ECs in our drinking water supplies depends on their physicochemical properties, discharging rate, and susceptibility to removal by water treatment processes. Uncertain health effects of long-term exposure to ECs justify their regular monitoring in drinking water supplies. In this review article, we will summarize the current status and future opportunities of surface-enhanced Raman spectroscopy (SERS) for EC analysis in drinking water. Working principles of SERS are first introduced and a comparison of SERS and liquid chromatography-tandem mass spectrometry in terms of cost, time, sensitivity, and availability is made. Subsequently, we discuss the strategies for designing effective SERS sensors for EC analysis based on five categories—per- and polyfluoroalkyl substances, novel pesticides, pharmaceuticals, endocrine-disrupting chemicals, and microplastics. In addition to maximizing the intrinsic enhancement factors of SERS substrates, strategies to improve hot spot accessibilities to the targeting ECs are equally important. This is a review article focusing on SERS analysis of ECs in drinking water. The discussions are not only guided by numerous endeavors to advance SERS technology but also by the drinking water regulatory policy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号