首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   0篇
  国内免费   11篇
安全科学   7篇
废物处理   26篇
环保管理   15篇
综合类   17篇
基础理论   47篇
污染及防治   89篇
评价与监测   7篇
社会与环境   5篇
  2023年   1篇
  2022年   5篇
  2021年   2篇
  2019年   4篇
  2018年   11篇
  2017年   5篇
  2016年   4篇
  2015年   12篇
  2014年   12篇
  2013年   21篇
  2012年   5篇
  2011年   17篇
  2010年   8篇
  2009年   13篇
  2008年   18篇
  2007年   13篇
  2006年   12篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   10篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1982年   1篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1971年   1篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
91.
Organosolv lignin was treated with ethanol at sub/supercritical temperatures (200, 275, and 350 °C) for conversion to low molecular phenols under different reaction times (20, 40, and 60 min), solvent-to-lignin ratios (50, 100, and 150 mL g−1), and initial hydrogen gas pressures (2 and 3 MPa). Essential lignin-degraded products, oil (liquid), char (solid), and gas were obtained, and their yields were directly influenced by reaction conditions. In particular, concurrent reactions involving depolymerization and recondensation as well as further (secondary) decomposition were significantly accelerated with increasing temperature, leading to both lignin-derived phenols in the oil fraction and undesirable products (char and gas).  相似文献   
92.
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products.The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500 °C but the polycyclic aromatic hydrocarbons became the major compounds at 900 °C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700 °C under steam gasification condition.For WBC, both char utilization by pyrolysis at low temperature (500 °C) and syngas recovery by steam gasification at higher temperature (900 °C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500 °C) might be one of viable options. Steam gasification at 900 °C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered.  相似文献   
93.
The effects of arsenic (As2O3) on plasma osmolarity, Na and K concentrations, the activity of gill Na–K-ATPase, and on the ultrastructure of gill chloride cells were compared between seawater tilapia (Oreochromis mossambicus) and freshwater tilapia in the Institute of Zoology, Academia Sinica, between 1989 and 1991. Arsenic was found to be more lethal in seawater tilapia [96 h LC50 (median lethal concentration): 26.5 ppm] than in freshwater ones (71.7 ppm). No significant effect was found on plasma ion concentrations and osmolarity, enzyme activity or the ultrastructure of chloride cells in freshwater tilapia after 96 h exposure to 70 ppm arsenic. In contrast, 96 h exposure to 15 ppm arsenic caused evident effects in seawater tilapia: an increase in plasma osmolarity and activity of gill Na–K-ATPase, as well as better development of the chloride cell tubular system. These data suggest that the lethal effect of arsenic may be partially attributed to a hydromineral disturbance in seawater tilapia, but in freshwater tilapia arsenic perhaps causes destruction in some physiological mechanisms other than osmoregulation. The activation of gill Na–K-ATPase and chloride cells in seawater tilapia appears to indicate an adaptation in the osmoregulatory mechanism to arsenic exposure, i.e., to enhance secreting ions or arsenic in the gills.  相似文献   
94.
This study investigated the feasibility of a bulking agent of granular porous media (GPM) for the composting of swine manure. Two lab-scale composting reactors were operated to evaluate the general performances and maturity parameters using GPM made of wastes from the Portland cement manufacturing processes as an alternative bulking agent. The overall volatile solid (VS) removal was 38.5% (dry basis). During the experiments, moisture content ranged between 41% and 53%, ensuring feasibility of microbial activity in composting. Cured compost showed proper maturity and low phytotoxicity, despite the slight decreases of CO(2) production and VS removal at the second batch operation. Various physico-chemical parameters of the cured compost met the regulatory standards reported elsewhere. The pH, carbon-to-nitrogen ratio, ammonia nitrogen and soluble organic carbon (SOC) of the cured compost were significantly correlated to the germination index (GI) using the seeds of Chinese cabbage and lettuce, indicating the progressive biodegradation of phytotoxins as well as organic matter. Consequently, the results obtained in this study demonstrate that GPM could contribute to the environmentally friendly and economical composting of problematic swine manure as a recyclable bulking agent.  相似文献   
95.

The energy crisis and environmental pollution have recently fostered research on efficient methods such as environmental catalysis to produce biofuel and to clean water. Environmental catalysis refers to green catalysts used to breakdown pollutants or produce chemicals without generating undesirable by-products. For example, catalysts derived from waste or inexpensive materials are promising for the circular economy. Here we review environmental photocatalysis, biocatalysis, and electrocatalysis, with focus on catalyst synthesis, structure, and applications. Common catalysts include biomass-derived materials, metal–organic frameworks, non-noble metals nanoparticles, nanocomposites and enzymes. Structure characterization is done by Brunauer–Emmett–Teller isotherm, thermogravimetry, X-ray diffraction and photoelectron spectroscopy. We found that water pollutants can be degraded with an efficiency ranging from 71.7 to 100%, notably by heterogeneous Fenton catalysis. Photocatalysis produced dihydrogen (H2) with generation rate higher than 100 μmol h−1. Dihydrogen yields ranged from 27 to 88% by methane cracking. Biodiesel production reached 48.6 to 99%.

  相似文献   
96.
The effect of a terrestrial humic acid (HA) and Suwannee River HA on the cytotoxicity of engineered zinc oxide nanoparticles (ZnONPs) and titanium dioxide nanoparticles (TiO2NPs) to natural aquatic bacterial assemblages was measured with spread plate counting. The effect of HA (10 and 40 ppm) on the cytotoxicity of ZnONPs and TiO2NPs was tested factorially in the presence and absence of natural sunlight (light irradiation (LI)). The experiment was of full factorial, completely randomized design and the results were analyzed using the General Linear Model in SAS analytical software. The method of least squares means was used to separate the means or combinations of means. We determined the mechanism of toxicity via measurements of oxidative stress and metal ions. The toxicity of ZnONPs and TiO2NPs to natural aquatic bacterial assemblages appears to be concentration dependent. Moreover, the cytotoxicity of ZnONPs and TiO2NPs appeared to be affected by HA concentration, the presence of sunlight irradiation, and the dynamic multiple interactions among these factors. With respect to light versus darkness in the control group, the data indicate that bacterial viability was inhibited more in the light exposure than in the darkness exposure. The same was true in the HA treatment groups. With respect to terrestrial versus Suwanee River HA for a given nanoparticle, in light versus darkness, bacterial viability was more inhibited in the light treatment groups containing the terrestrial HA than in those containing Suwanee River HA. Differences in the extent of reactive oxygen species formation, adsorption/binding of ZnONPs/TiO2NPs by HA, and the levels of free metal ions were speculated to account for the observed cytotoxicity. TEM images indicate the attachment and binding of the tested nanoparticles to natural bacterial assemblages. Besides the individual parameter, significant effects on bacterial viability count were also observed in the following combined treatments: HA-ZnONPs, HA-LI, ZnONPs-LI, and HA-ZnONPs-LI. The main effects of all independent variables, plus interaction effects in all cases were significant with TiO2NPs.  相似文献   
97.
Diagnosis and monitoring are the major tasks of an operator in main control room of nuclear power plants (NPPs). The operator’s mental workload influences his/her performance, and furthermore, affects the system safety and operations. This study investigated the operator’s mental workload and work performance of the NPP in Taiwan. An experiment including primary and secondary tasks was designed to simulate the reactor shutdown procedure of the fourth nuclear power plant (FNPP). The performance of the secondary tasks (error rate), subjective mental workload (NASA Task Load Index, NASA-TLX) as well as seven physiological indices were assessed and measured. The group method of data handling (GMDH) was applied to integrate these physiological indices to develop a work performance predictive model. The validity of the proposed model is very well with R2 = 0.84 and its prediction capability is high (95% confidence interval). The proposed model is expected to provide control room operators a reference value of their work performance by giving physiological indices. Besides NPPs, the proposed model can be applied to many other fields, e.g. aviation, air transportation control, driving and radar vigilance, etc.  相似文献   
98.
Freight transportation activities are responsible for a large share of air pollution and greenhouse gas emissions in the United States. Various freight transportation modes have significantly different impacts on air quality and environmental sustainability, and this highlights the need for a better understanding of interregional freight shipment mode choices. This paper develops a binomial logit market share model to predict interregional freight modal share between truck and rail as a function of freight and shipment characteristics. This model can be used to estimate the impacts of various factors, such as oil price, on shippers’ mode choice decisions. A set of multiyear freight and geographical information databases was integrated to construct regression models for typical freight commodities. The atmospheric impact levels incurred by different freight modal choice decisions are analyzed to provide insights on the relationship among freight modal split, oil price change, and air quality.

Implications:

Freight transportation has become a major source of energy consumption and air pollution, and emissions rates vary significantly across different modes. Understanding freight shipment mode choice under various economic and engineering factors will help assess the environmental impacts of freight shipment systems at the national level. This paper develops a binomial logit model for two dominating modes (truck and rail) and shows how this model is incorporated into an environmental impact analysis. The framework will be useful to policy makers to assess the impacts of freight movements on air quality and public health and to mitigate those adverse impacts.  相似文献   

99.
Characteristics of leachate from pyrolysis residue of sewage sludge   总被引:3,自引:0,他引:3  
Hwang IH  Ouchi Y  Matsuto T 《Chemosphere》2007,68(10):1913-1919
The pyrolysis residue (SP) of sewage sludge (SS) produced at 500 degrees C was subjected to batch and column leaching tests to investigate the release of its organic and inorganic constituents and metals. For comparison, incineration ash (SI) obtained from a SS incinerator was also tested. Pyrolysis and incineration reduced organic matter of SS from 0.78 kg kg(-1)-dry SS to 0.16 and 0.01 kg kg(-1)-dry SS, respectively. Heavy metals remained in SP without being volatilized, although Cd and Pb were transferred into the off-gas during incineration. In the batch leaching test with the leaching liquid-to-solid mass ratio (L/S)=10, the pH of the SS, SP, and SI filtrates was 6.3, 7.9, and 11.0, respectively. The total organic carbon concentrations were in the order SS (877 l mg l(-1))>SP (99 mg l(-1))>SI (26 mg l(-1)). The SP and SI filtrates met the landfill standard for the Cd and Pb concentrations (<0.3 mg l(-1)). In the column tests, although the SP contained more organic matter than that of SI, its carbon discharge into the leachate under aerobic conditions was similar to that of SI under anaerobic conditions. The leaching of heavy metals, such as Cd, Cr, Pb, and Zn, was also suppressed in SP during the active decomposition of organic matter. We demonstrated that pyrolysis reduces the potential release of pollutants from sewage sludge in landfill, making it a promising method of treating sewage sludge before landfilling.  相似文献   
100.
The operations of carbonization facilities for municipal solid waste treatment in Japan were examined. Input waste, system processes, material flows, quality of char and its utilization, fuel and chemical consumption, control of facility emissions, and trouble areas in facility operation were investigated and analyzed. Although carbonization is a technically available thermochemical conversion method for municipal solid waste treatment, problems of energy efficiency and char utilization must be solved for carbonization to be competitive. Possible solutions include (1) optimizing the composition of input waste, treatment scale, organization of unit processes, operational methods, and quality and yield of char on the basis of analysis and feedback of long-term operating data of present operating facilities and (2) securing stable char demands by linking with local industries such as thermal electric power companies, iron manufacturing plants, and cement production plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号