首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   795篇
  免费   37篇
  国内免费   4篇
安全科学   44篇
废物处理   125篇
环保管理   122篇
综合类   120篇
基础理论   187篇
环境理论   4篇
污染及防治   132篇
评价与监测   41篇
社会与环境   48篇
灾害及防治   13篇
  2023年   8篇
  2022年   12篇
  2021年   19篇
  2020年   16篇
  2019年   18篇
  2018年   31篇
  2017年   30篇
  2016年   41篇
  2015年   33篇
  2014年   21篇
  2013年   62篇
  2012年   33篇
  2011年   48篇
  2010年   41篇
  2009年   46篇
  2008年   42篇
  2007年   48篇
  2006年   45篇
  2005年   28篇
  2004年   22篇
  2003年   15篇
  2002年   17篇
  2001年   9篇
  2000年   9篇
  1999年   11篇
  1998年   8篇
  1997年   8篇
  1996年   10篇
  1995年   9篇
  1994年   3篇
  1993年   7篇
  1992年   7篇
  1991年   11篇
  1990年   6篇
  1989年   4篇
  1986年   6篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1976年   2篇
  1972年   2篇
  1971年   2篇
  1961年   3篇
  1959年   2篇
  1958年   2篇
  1957年   5篇
  1955年   5篇
  1954年   2篇
  1940年   2篇
  1926年   1篇
排序方式: 共有836条查询结果,搜索用时 15 毫秒
31.
Coal tars have been identified as posing a threat to human health due to their toxic, mutagenic and carcinogenic characteristics. Workers involved in former gasholders decommissioning are potentially exposed to relevant concentrations of volatile and semi-volatile hydrocarbons upon opening up derelict tanks and during tar excavation/removal. While information on contaminated sites air-quality and its implications on medium-long term exposure is available, acute exposure issues associated with the execution of critical tasks are less understood. Calculations indicated that the concentration of a given contaminant in the gasholder vapour phase only depends on the coal tar composition, being only barely affected by the presence of water in the gasholder and the tar volume/void space ratio. Fugacity modelling suggested that risk-critical compounds such as benzene, naphthalene and other monocyclic and polycyclic aromatic hydrocarbons may gather in the gasholder air phase at significant concentrations. Gasholder emissions were measured on-site and compared with the workplace exposure limits (WELs) currently in use in UK. While levels for most of the toxic compounds were far lower than WELs, benzene air-concentrations where found to be above the accepted threshold. In addition due to the long exposure periods involved in gasholder decommissioning and the significant contribution given by naphthalene to the total coal tar vapour concentration, the adoption of a WEL for naphthalene may need to be considered to support operators in preventing human health risk at the workplace. The Level I fugacity approach used in this study demonstrated its suitability for applications to sealed environments such as gasholders and its further refining could provide a useful tool for land remediation risk assessors.  相似文献   
32.
The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 °C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6 ± 1.6 μg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 μg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites occurred. The availability of dissolved O2 did not affect MTBE biodegradation significantly, with similar MTBE biodegradation behaviour and rates down to ca. 0.7 mg/L dissolved O2 concentration. The results indicate that aerobic MTBE biodegradation could be significant in the plume fringe, during mixing of the contaminant plume and uncontaminated groundwater and that, relative to the plume migration, aerobic biodegradation is important for MTBE attenuation. Moreover, should the groundwater dissolved O2 concentration fall to zero such that MTBE biodegradation was inhibited, an engineered approach to enhance in situ bioremediation could supply O2 at relatively low levels (e.g. 2–3 mg/L) to effectively stimulate MTBE biodegradation, which has significant practical advantages. The study shows that aerobic MTBE biodegradation can occur at environmentally significant rates in this aquifer, and that long-term microcosm experiments (100s days) may be necessary to correctly interpret contaminant biodegradation potential in aquifers to support site management decisions.  相似文献   
33.
34.
35.
Vetter W  Gaul S  Olbrich D  Gaus C 《Chemosphere》2007,66(10):2011-2018
The marine halogenated natural product 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1) is widely distributed in the environment. In this study, we screened samples which have previously been found to contain remarkably high residues of Q1 (blubber of marine mammals from Australia, samples from Antarctica, human milk from the Faroe Island) for the additional presence of mixed chlorinated and brominated congeners. Using GC/ECNI-MS, all samples tested were positive and many contained four out of five possible bromohexachloro congeners (BrCl6-MBPs), five out of 14 possible dibromopentachloro congeners (Br2Cl5-MBPs), five of 21 possible tribromotetrachloro-congeners (Br3Cl4-MBPs), as well as several higher brominated congeners. About 20 heptahalo congeners of Q1 are described for the first time in the scientific literature. Isomers eluted within about one minute, respectively. Hence it is possible, that the peak clusters identified may be composed of more, co-eluting congeners. Similarities in the GC/ECNI-MS mass spectra with polychlorinated biphenyls (PCBs) were addressed. We also suggest an acronym system similar to that in use for polychlorinated biphenyls that may simplify the use of this substance class in scientific papers. In the samples from Australia, BrCl6-MBPs and Br2Cl5-MBPs amounted for 7-27.5% and 0.4-4.2% of Q1, respectively whereas Br3Cl4-MBPs and higher brominated MBPs were found in the range of <1% of Q1 or less.  相似文献   
36.
It has been suggested that obese individuals, because of an increased dilution space (body fat) for lipophilic organochlorines compounds, may have greater levels of toxic pollutants than lean sedentary individuals. It is important to further examine this possibility because of the potential contribution of organochlorine pesticides in the development of Parkinson's disease and other neurological diseases. The aim of this study was to further investigate the relationship between the magnitude of obesity and the plasma concentration of organochlorines for a wide range of BMI (with participants at steady state body weight). Fifty-three individuals were selected on the basis of their body mass index (BMI): lean controls (n=16; mean BMI 22.8+/-2.2 kg/m(2); mean age 38.8+/-9.4 years), obese individuals (n=19; mean BMI 33.4+/-3.0 kg/m(2); mean age 38.6+/-7.6 years) and morbidly obese individuals (n=18; mean BMI 49.3+/-6.5 kg/m(2); mean age 44.3+/-9.2 years). Blood samples were analyzed for organochlorine compounds. The relationship between the total plasma organochlorine concentration and BMI was tested using a multiple regression analysis. Age was included in the model. There was no relationship between the total plasma organochlorine concentration and BMI. Organochlorine concentrations, however, were correlated with age (BMI-adjusted R(2)=0.46; p<0.001). At steady state body weight, toxic pollutant concentrations are not associated to obesity but strongly correlate with age.  相似文献   
37.
We report the findings of a comparative analysis examining patterns of accumulation and partitioning of the heavy metals copper (Cu), lead (Pb) and zinc (Zn) in mangroves from available field-based studies to date, employing both species level analyses and a phylogenetic approach. Despite mangroves being a taxonomically diverse group, metal accumulation and partitioning for all metals examined were broadly similar across genera and families. Patterns of metal accumulation were also similar regardless of whether species were classified as salt secreting or non-secreting. Metals were accumulated in roots to concentrations similar to those of adjacent sediments with root bio-concentration factors (BCF; ratio of root metal to sediment metal concentration) of 1< or =. Root BCFs were constant across the exposure range for all metals. Metal concentrations in leaves were half that of roots or lower. Essential metals (Cu and Zn; translocation factors (TF; ratio of leaf metal to root metal concentration) of 0.52 and 0.53, and leaf BCFs of 0.47 and 0.51, respectively) showed greater mobility than non-essential metals (Pb; TF of 0.31 and leaf BCF of 0.11). Leaf BCFs for the essential metals Cu and Zn decreased as environmental concentrations increased. The non-essential metal Pb was excluded from leaf tissue regardless of environmental concentrations. Thus mangroves as a group tend to operate as excluder species for non-essential metals and regulators of essential metals. For phytoremediation initiatives, mangrove ecosystems are perhaps best employed as phytostabilisers, potentially aiding in the retention of toxic metals and thereby reducing transport to adjacent estuarine and marine systems.  相似文献   
38.
This article summarizes a study that evaluated a new decontamination technique for the mitigation and abatement of hazardous dust and particulates. Traditional decontamination methods are time‐consuming, expensive, can create airborne hazards, and do not always bring the concentration of the contaminant to acceptable levels. The use of the removable thin film coating will increase efficiency, will not generate airborne hazards, will decrease costs, and, with one application, will bring the hazardous dust concentrations to acceptable levels. Qualitative tests demonstrated that the removable thin film coating reduced the amount of visible luminescent dust (a surrogate for hazardous dust) from various surfaces. It also indicated that wherever there were minute scratches, the coating did not remove all of the dust. However, the qualitative tests showed that this decontamination method worked well as a preventative method, protecting clean areas from becoming contaminated when exposed to the luminescent dust. Further investigation was conducted using a scanning electron microscope (SEM) and carbon dust. Overall, the SEM experiment demonstrated that there was a statistically significant (p = 0.00007) removal of carbon dust (less than 10 μm in size) from surfaces with crevasses larger than 3 μm. The SEM also revealed that there were some limitations where there were large clusters of carbon dust; in these instances, the coating would tear and remain on the sample surface. One method to resolve this limitation involved adding KevlarTM fibers to the removable thin film coating. It was thought that this would increase the strength of the coating and eliminate the coating from tearing when removing large clusters of a contaminant. Unfortunately, this did not alleviate the issue. The use of an engineered textile, saturated with the coating, appeared to eliminate the problem with the coating not being able to remove the contaminant from the minute surface scratches and improved the removal process of the coating. © 2008 Wiley Periodicals, Inc.  相似文献   
39.
40.
Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM? 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO?) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions calculated from the OPC data are closely correlated with the results of the particle size-selective sampling using the CIP 10. Furthermore, the OPC data allow calculation of the thoracic fraction of workplace aerosol (not measured by sampling), which is interesting in the presence of allergenic particles like fungi spores. The results also show that the modified COP inlet adequately samples inhalable aerosol in the range of workplace particle-size distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号