Press conferences are an important element of a government's communication strategy at climate change summits. From a theoretical perspective, press conferences should serve two main functions: exerting pressure in negotiations and informing the public. These functions correspond to two logics of action: a logic of consequence where governments use press conferences as negotiation tools and a logic of appropriateness where governments organize press conferences to increase transparency. Based on new data from the United Nations Framework Convention on Climate Change archives, we find limited support for these two logics of action. Neither democracies, which, we argue, are more likely to follow a logic of appropriateness, nor vulnerable countries, which are more likely to follow a logic of consequence, organize systematically more press conferences. Other factors, such as capacity and a government's function in the negotiation structure, seem to play a more important role. 相似文献
Within the context of European Union (EU) energy policy and sustainibility in waste management, recent EU regulations demand energy efficient and environmentally sound disposal methods of Municipal Solid Waste (MSW). Currently, landfill with its many drawbacks is the preferred option in the EU and many other industrialised countries. Within the waste management hierarchy thermal disposal especially incineration is a viable and proven alternative. But, the dominating method, mass-burn grate incineration has drawbacks as well particularly hazardous emissions and harmful process residues. In recent years, pyrolysis and gasification technologies have emerged to address these issues and improve the energy output. To keep the many players in the field comprehensively informed and up-to-date, novel and innovative technology approaches emphasising European developments are reviewed. 相似文献
ABSTRACT: A free water surface (FWS) constructed wetland was installed at a dairy in Glendale, Arizona, to study the potential of such a wetland to remove nitrogen (N) from wastewater. The study objectives were: (1) to determine N removal from the wastewater, and (2) to evaluate N accumulation in soil and plant tissues. The system consisted of eight cells (70 × 9 × 1.5 m) planted with Typha domingensis, Scirpus validus, and Phragmites australis. The four cells in series were lined with plastic, and the four cells in a parallel series were lined with clay. Cells received approximately 180 m3/d of partially treated dairy effluent. Plant tissues and soil samples were collected above and below ground from 24 locations during one year. Total N removal from wastewater was about 17 percent. Clay‐lined cells accumulated more N in the soil and less N in plant biomass compared with plastic lined cells. Plant biomass accounted for approximately 60 percent of total N accumulated in cells with dense plant communities. Ninety percent of accumulated soil N was organic. Total N accumulated in soil reached a maximum (1,100 mg/kg) eight months after the introduction of wastewater. 相似文献
The impact of timber management and land-use change on forage production, turkey and deer abundance, red-cockaded woodpecker
colonies, water yield, and trout abundance was projected as part of a policy study focusing on the southern United States.
The multiresource modeling framework used in this study linked extant timber management and land-area policy models with newly
developed models for forage, wildlife, fish, and water. Resource production was integrated through a commonly defined land
base that could be geographically partitioned according to individual resource needs. Resources were responsive to changes
in land use, particularly human-related, and timber management, particularly the harvest of older stands, and the conversion
to planted pine. 相似文献
/ Spatially explicit models that combine remote sensing with geographic information systems (GIS) offer great promise to land managers because they consider the arrangement of landscape elements in time and space. Their visual and geographic nature facilitate the comparison of alternative landscape designs. Among various activities associated with forest management, none cause greater concern than the impacts of timber harvesting on the composition, structure, and function of landscape ecosystems. A timber harvest allocation model (HARVEST) was used to simulate different intensities of timber harvest on 23,592-ha hypothetical landscapes with varying sizes of timber production areas and different initial stand age distributions. Our objectives were to: (1) determine the relative effects of the size of timber production areas, harvest intensity, method used to extract timber, and past timber harvest activity on the production of forest interior and edge; and (2) evaluate how past management (in the form of different initial stand age distributions) constrains future timber production options. Our simulations indicated that the total area of forest interior and the amount of forest edge were primarily influenced by the intensity of timber harvest and the size of openings created by harvest. The size of the largest block of interior forest was influenced most by the size of timber harvests, but the intensity of harvest was also significant, and the size of nontimber production areas was important when harvests were numerous and widely dispersed within timber management areas, as is often the case in managed forests. Stand age-class distributions produced by past harvest activity limited the amount of timber production primarily when group selection was used, but also limited clear-cutting when recent harvest levels were high.KEY WORDS: Simulation modeling; Timber harvest; Historical context; Spatial context; Landscape pattern; Forest interior; Forest edge 相似文献
Process hazards review (PHR) techniques have generally been applied by large, sophisticated companies in the nuclear, aerospace, and chemical process industries. There remains, however, a large population of smaller distributors and consumers of hazardous materials which could benefit equally from the application of PHR. These consumers unfortunately are generally less sophisticated and individually lack the necessary resources required to apply such state-of-the-art safety techniques.
Where common processes can be identified, it is possible to conduct a more generic PHR that will provide a sound technical basis for recognizing and preventing the development of hazards wherever these processes are used. Some facility-specific issues will always need to be considered, but the existence of the generic PHR should make the conduct of a PHR by each facility considerably easier and less costly.
Researchers from the National Institute for Occupational Safety and Health (NIOSH) contracted with DNV Technica Inc. to lead a hazard and operability study (HAZOP) of agricultural handling of anhydrous ammonia, from the receipt of ammonia at the retail distribution centre to the application of the ammonia by farmers to the fields. The multidisciplinary HAZOP team consisted of representatives from NIOSH, an agricultural chemical trade association, an ammonia producer, state ammonia facility inspectors, a retail distributor, and an equipment manufacturer. Several participants were part-time farmers with ammonia application experience.
Some specific aspects of applying the HAZOP technique in the context of this study, the findings obtained, and the plans to disseminate the important safety information developed during the course of the PHR are discussed. Finally, it is suggested that this approach could prove to be a useful addition to the product stewardship activities of chemical producers. 相似文献