In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and 12C content were analyzed; and in particular, CO2 concentration in incineration gases and 12C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively.
Implications: This study intends to compare greenhouse gas emissions calculated using 12C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using 12C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and 12C content were calculated by directly collecting incineration gases of the target urban solid waste incineration facilities, and greenhouse gas emissions of the target urban solid waste incineration facilities through this survey were compared with greenhouse gas emissions, which used the previously calculated assay value of solid waste. 相似文献
Two industrial sites were investigated based on years of available hydrogeologic information and monitoring data for soil and groundwater. Collected data were forensically evaluated using age-dating and fingerprinting methods. The previous business uses of the project sites were as a gas station, laundry/dry-cleaning service, and car wash with petroleum underground storage tanks (USTs). As a result, these sites were exposed to a number of toxic contaminants at relatively high concentrations. Source control was necessary for successful remediation and the ultimate removal of the remaining compounds from these industrial sites. Although contaminated soil around the source was excavated during the remedial action and the high concentrations of contaminants were reduced, typical groundwater contaminants such as petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, ethylbenzene, xylenes (BTEX), and oxygenates including methyl tert-butyl ether (MTBE), diisopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), and tert-butyl alcohol (TBA) were persistently found at the studied sites around the source points. The plume and concentration of contaminants had changed their shapes and strength for all monitoring periods. Thus, additional source control seems to be a requirement for the complete removal of source contamination, which must be ascertained with groundwater and soil monitoring on a regular time base. For the study sites, monitored natural attenuation was relatively feasible for the long-term plan; however, it did not offer a perfect remediation solution for an ultimate goal because of residual toxic compounds that might have affected the surrounding residential areas at higher concentrations than their health limits. Therefore, as a remediation strategy, the combination of clean-up technology and natural attenuation with monitoring activities are more highly recommended than either clean-up or natural attenuation used separately. 相似文献
Design and operating parameters, and cause and effect relationships among feedstocks and products in the pyrolysis of waste polymers are needed if this method of processing is to be used for energy recovery from waste plastics. The purpose of this study was to quantify the effect of various operating factors for the pyrolysis of common polymeric wastes. Experiments were performed using a conventional retort tube as a batch reactor. The operating factors considered were temperature and reaction time at constant heating rate. High density polyethylene (PE) and polystyrene (PS), the most common plastic waste in Korea, were used singly and in mixture.The pyrolysis time for maximum oil production from a PE-PS mixture was shorter than in the case of PE alone, showing an enhancement effect from the PS. The maximum gas production time from PE-PS mixtures was shorter than for PE alone at 500° C; above 600° C, this does not occur. Small aromatic compounds (which can be valuable) are produced at maximum with an 1:1 mixture of PE and PS at 600° C, showing the possibility of process control for the maximum recovery of desirable pyrolysis products. The maximum yield of toluene, xylene, styrene, and 1-propenyl benzene were 8.6, 8.9, 51.0 and 7.4 wt.% of feed for pyrolysis PS at 700° C, respectively. For naphthalene, it was at 700° C with 1:1 PE:PS (by wt.). The maximum recovery was 1.3 wt.%. Diels-Alder theory can explain the formation of aromatic compounds in the pyrolysis products. The yield of these secondary pyrolysis products can be controlled by reaction time, pyrolysis temperature and mixing ratio of plastic wastes in the pyrolysis feed. 相似文献
A mathematical model for the transport of hydrophobic organic contaminants in an aquifer under simplistic riverbank filtration conditions is developed. The model considers a situation where contaminants are present together with dissolved organic matter (DOM) and bacteria. The aquifer is conceptualized as a four-phase system: two mobile colloidal phases, an aqueous phase, and a stationary solid phase. An equilibrium approach is used to describe the interactions of contaminants with DOM, bacteria, and solid matrix. The model is composed of bacterial transport equation and contaminant transport equation. Numerical simulations are performed to examine the contaminant transport behavior in the presence of DOM and bacteria. The simulation results illustrate that contaminant transport is enhanced markedly in the presence of DOM and bacteria, and the impact of DOM on contaminant mobility is greater than that of bacteria under examined conditions. Sensitivity analysis demonstrates that the model is sensitive to changes of three lumped parameters: K+1 (total affinity of stationary solid phase to contaminants), K+2 (total affinity of DOM to contaminants), and K+3 (total affinity of bacteria to contaminants). In a situation where contaminants exist simultaneously with DOM and bacteria, contaminant transport is mainly affected by a ratio of K+1/K+2/K+3, which can vary with changes of equilibrium distribution coefficient of contaminants and/or colloidal concentrations. In riverbank filtration, the influence of DOM and bacteria on the transport behavior of contaminants should be accounted to accurately predict the contaminant mobility. 相似文献
To investigate the dispersion patterns and the characteristics of heavy metal contamination due to urbanisation and industrialisation, soils and dusts collected from the Seoul area were analysed for Cu, Pb, Zn and Cd. The metal concentrations in most soils and dusts are higher than the world averages. The pollution index (( Metal concentrations in soils/Permissible level for metal)÷(Number of metals)) of soils and dusts is > 1 in most of the Seoul area, a result that concurs with the industrialisation and urbanisation index of the Seoul area. The soils are contaminated with Cu, Zn, Cd and particularly Pb. This suggests that the contamination of the soils in the Seoul area are mainly caused by vehicular emissions. The pollution index of soil is the highest in the Kuro area where Cu and Zn contamination in soils are due to the indigenous brass and bronze factories. From the discriminant analysis, the Seoul area may be partitioned into control, traffic and industrialized areas by the metal concentrations in the order of Zn > Cu > Pb. 相似文献
The metallurgy industry and municipal waste incinerators are considered the main sources of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) in many countries. This study investigated the emission factors and total emissions of PCDD/Fs and dioxin-like polychlorinated biphenyls (PCBs) emitted from metallurgy industries (including ferrous and nonferrous foundries) in Korea. The toxic equivalency (TEQ) emission factor of PCDD/Fs was the highest for secondary copper production, at 24451 ng I-TEQ/ton. The total estimated emissions of PCDD/Fs from these sources were 35.259 g I-TEQ/yr, comprising 0.088 g I-TEQ/yr from ferrous foundries, 31.713 g I-TEQ/yr from copper production, 1.716 g I-TEQ/yr from lead production, 0.111 g I-TEQ/yr from zinc production, and 1.631 g I-TEQ/yr from aluminum production. The total estimated annual amounts of dioxin-like PCBs emitted from these sources were 13.260 g WHO-TEQ/yr, comprising 0.014 g WHO-TEQ/yr from ferrous foundries, 12.675 g WHO-TEQ/yr from copper production, 0.170 g WHO-TEQ/yr from lead production, 0.017 g WHO-TEQ/yr from zinc production, and 0.384 g WHO-TEQ/yr from aluminum production. The highest emission factor was found for secondary copper smelting, at 9770 ng WHO-TEQ/ton. 相似文献
Addition of plant residue into soils improves soil physiochemical properties and its fertility. Rapeseed residue is an emerging N source to paddy soils via rice-rape double-cropping practice. The objective of this study was to evaluate the effects of rapeseed residue and eggshell waste on chemical changes and enzyme activity in the rice paddy soil. The powdered eggshells at 0, 1, 3, and 5% were applied once to 7.0 kg paddy repacked soils in each pot treated with the rapeseed residue or the conventional N, P, and K fertilisers. Eight rice seedlings (Oriza sativa L. cv. Ilmibyeo) (40 days after sowing) were transplanted to the treated each pot. The contents of total C (TC) and N (TN), and organic matter (OM) were significantly increased in soils treated with the rapeseed residue compared to the N, P, and K fertilisers. With the addition of eggshell containing ~92% CaCO3, a considerable increase of soil pH was observed in soils treated with the rapeseed residue and the N, P, and K fertilisers, compared to the untreated soil. Activities of β-glucosidase, urease, and arylsulfatase enzymes were higher in soils treated with the rapeseed residue than soils treated with the N, P, and K fertilisers. The eggshell additions at 1, 3, and 5% into soils treated with the rapeseed residue increased enzyme activity mainly resulting from N mineralisation, whereas no change in enzyme activity was observed in the soils treated with the NPK fertiliser. The combined use of the rapeseed residue and the eggshells can be beneficial to improve soil environment. 相似文献
Honey bee workers exhibit an age-based division of labor (temporal polyethism, DOL). Younger bees transition through sets of tasks within the nest; older bees forage outside. Components of temporal polyethism remain unrevealed. Here, we investigate the timing and pattern of pre-foraging behavior in distinct strains of bees to (1) determine if a general pattern of temporal DOL exists in honey bees, (2) to demonstrate a direct genetic impact on temporal pacing, and (3) to further elucidate the mechanisms controlling foraging initiation. Honey bees selected for differences in stored pollen demonstrate consistent differences in foraging initiation age. Those selected for increased pollen storage (high pollen hoarding strain, HSBs) initiate foraging earlier in life than those selected for decreased pollen storage (low pollen hoarding strain, LSBs). We found that HSBs both initiate and terminate individual pre-foraging tasks earlier than LSBs when housed in a common hive environment. Unselected commercial bees (wild type) generally demonstrated intermediate behavioral timing. There were few differences between genotypes for the proportion of pre-foraging effort dedicated to individual tasks, though total pre-foraging effort differences differed dramatically. This demonstrates that behavioral pacing can be accelerated or slowed, but the pattern of behavior is not fundamentally altered, suggesting a general pattern of temporal behavior in honey bees. This also demonstrates direct genetic control of temporal pacing. Finally, our results suggest that earlier HSB protein (pollen) consumption termination compared to LSBs may contribute to an earlier decline in hemolymph vitellogenin protein titers, which would explain their earlier onset of foraging. 相似文献
Thirteen isomers of branched para-nonylphenols (para-NP) in three technical mixtures were isomer-specifically determined using their synthesized standards by SIM of structurally specific ions, m/z 135, 149 or 163 with GC–MS. Of the 13 isomers, four isomers, 4-(2,4-dimethylheptan-4-yl)phenol, 4-(4-methyloctan-4-yl)phenol, 4-(3-ethyl-2-methylhexan-2-yl)phenol (3E22NP) and 4-(2,3-dimethylheptan-2-yl)phenol synthesized for their determinations were first used as standard substances. The 13 isomers in the technical mixtures individually occurred at mass percent portion of more than 2%. The total mass percent portions in the mixtures from Tokyo Chemical Industry (TCI), Aldrich, and Fluka covered with 89 ± 2%, 75 ± 4% and 77 ± 2%, respectively. The abundance of 4-(3,6-dimethylheptan-3-yl)phenol in the three mixtures was the largest with 11.1 ± 2% to 9.9 ± 0.3%, while that of 4-(2-methyloctan-2-yl)phenol was the smallest with 2.9 ± 0.3% to 3.0 ± 0.2%. Additionally, structures of four new isomers of more than 1% portion present in a technical mixture were elucidated as two pairs of diastereomeric isomers: two types of 4-(3,4-dimethylheptan-4-yl)phenol (344NP) and those of 4-(3,4-dimethylheptan-3-yl)phenol (343NP). By estrogenic assay of 13 isomers with yeast estrogen screen system, the activity of 3E22NP was the highest, while that of 4-(3-methyloctan-3-yl)phenol was the least. Their relative activities to that of 3E22NP were individually calculated. Estrogenic equivalent concentrations of the three technical mixtures were predictively evaluated. The ratio of the EEC to the conventional concentration, total mass percent portions of the 13 isomers in technical mixtures were 0.208 for TCI, 0.206 for Aldrich and 0.205 for Fluka. The predicted estrogenic activity of measured concentration of para-NP in technical mixtures was approximately 5-fold greater than the measured estrogen agonist activity. 相似文献
The emission rates and compositions of monoterpene from Pinus densiflora were investigated in the Gumsung (GM) and Worak (WM) mountains. The standard emission rates (ERs: ERs is the monoterpene emission rate at standard temperature, 30 degrees C) from P. densiflora ranged from 0.817 to 1.704 (mugC/gdw-h). The ERs and beta-values of total monoterpene were measured at the two study sites (GM and WM). In the spring and summer, the ERs were the highest, while relatively low values (<0.058mugC/gdw-h) were measured in the autumn and winter. In GM and WM sites the beta-value obtained for the different seasons ranged from 0.047 to 0.179, with an average of 0.09. The major monoterpene compounds from P. densiflora were alpha-pinene, myrcene, beta-phellandrene, d-limonene and alpha-terpinene. The fractional compositions of individual monoterpene compounds were significantly different between the two test sites in the summer and winter. The ERs of the older group (31-40 years) were higher than those in the younger group (21-30 years). However, the monoterpene compositions were similar between the two age groups. 相似文献