首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   2篇
  国内免费   5篇
安全科学   4篇
废物处理   23篇
环保管理   17篇
综合类   8篇
基础理论   26篇
污染及防治   64篇
评价与监测   10篇
社会与环境   2篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   2篇
  2014年   6篇
  2013年   9篇
  2012年   6篇
  2011年   16篇
  2010年   13篇
  2009年   9篇
  2008年   13篇
  2007年   15篇
  2006年   8篇
  2005年   2篇
  2004年   11篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1989年   2篇
  1984年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
151.
Kinetic modeling of fenton oxidation of phenol and monochlorophenols   总被引:30,自引:0,他引:30  
Kang N  Lee DS  Yoon J 《Chemosphere》2002,47(9):915-924
A kinetic model, consisting of 28 reactions, was proposed to understand the key mechanism of the Fenton oxidation of phenol and o-, m-, and p-chlorophenols. Particular attention is paid to the interactions of the organic intermediates with the Fe species. The proposed model reasonably predicts the decomposition kinetics and by-product formation for the different phenols at widely varying levels of Fe2+, H2O2, and the phenols. For the phenols and intermediates, change in concentrations with time was predicted within 20-30% deviation from the measured data. The single model predicts the overall kinetics of Fenton oxidation of all the tested phenols by adjusting the rate constant of hydroxyl radical for each phenol. Sensitivity analysis indicates that the key reactions are those that directly govern the levels of OH radical and Fe2+. Both the model prediction and the experimental results show that the decomposition rate could be complicated particularly by the availability of Fe2+. Understanding the interactions of the organic intermediates with Fe2+ is thus of critical importance to improve the decomposition performance.  相似文献   
152.
The effect of water content on the volatilization of nonaqueous phase liquid (NAPL) in unsaturated soils was characterized by one-dimensional venting experiments conducted to evaluate the lumped mass transfer coefficient. An empirical correlation based upon the modified Sherwood number, Peclet number, and normalized mean grain size was used to estimate initial lumped mass transfer coefficients over a range of water content. The effects of water content on the soil vapor extraction SVE process have been investigated through experimentation and mathematical modeling. The experimental results indicated that a rate-limited NAPL-gas mass transfer occurred in water-wet soils. A severe mass transfer limitation was observed at 61.0% water saturation where the normalized effluent gas concentrations fell below 1.0 almost immediately, declined exponentially from the initiation of venting, and showed long tailing. This result was attributed to the reduction of interfacial area between the NAPL and mobile gas phases due to the increased water content. A transient mathematical model describing the change of the lumped mass transfer coefficient was used. Simulations showed that the nonequilibrium mass transfer process could be characterized by the exponent beta, a parameter which described the reduction of the specific area available for NAPL volatilization. The nonequilibrium mass transfer limitations were controlled by the soil mean grain size and pore gas velocity, were well described by beta values below 1.0 at low water saturation, and were well predicted with beta values greater than 1.0 at high water saturation.  相似文献   
153.
The aim of this field study was to determine the concentrations and emissions of ammonia and hydrogen sulfide in different types of pig buildings in Korea to allow objective comparison between pig housing types in Korea and other countries. Concentrations of ammonia and hydrogen sulfide in the pig buildings averaged 7.5ppm and 286.5ppb and ranged from 0.8 to 21.4ppm and from 45.8 to 1235ppb, respectively. The mean emissions of ammonia and hydrogen sulfide per pig (normalized to 75kg liveweight) and area (m2) from pig buildings were 250.2 and 37.8mg/h/pig and 336.3 and 50.9mg/h/m2, respectively. Ammonia and hydrogen sulfide concentrations and emissions were higher in the pig buildings managed with deep-pit manure systems with slats and mechanical ventilation than in other housing types.  相似文献   
154.
Journal of Material Cycles and Waste Management - Owing to the increasing ACW generation, asbestos detoxification and recycling technologies are required for environmental and economic reasons....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号