首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   2篇
安全科学   1篇
环保管理   1篇
综合类   4篇
基础理论   2篇
污染及防治   3篇
评价与监测   2篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2009年   2篇
  2006年   1篇
  2005年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
Total arsenic was determined in crude petroleum and liquid hydrocarbons derived from crude petroleum by extraction with boiling water or boiling aqueous nitric acid (concentration 0.25 to 2.5 M), mineralization of the extracts with concentrated nitric/sulphuric acid, and reduction of the arsenate to arsine in a hydride generator. The arsine was flushed into a helium-DC plasma. The arsenic emission was monitored at 228.8 nm. The total arsenic concentration in 53 crude oil samples ranged from 0.04 to 514 mg L–1 (median 0.84 mg L–1). Arsenic was also determined in several refined liquid hydrocarbons and in a commercially available arsenic standard in an organic matrix (triphenylarsine in xylene). The method was checked with NIST 1634b Trace Elements in Residual Fuel Oil. The arsenic concentration found in this standard agreed with the certified value (0.12±0.2 g g–1) within experimental error. Viscous hydrocarbons such as the fuel oil must be dissolved in xylene for the extraction to be successful. Hydride generation applied to an aqueous not-mineralized extract from an oil containing 1.67 g As mL–1 revealed, that trimethylated arsenic (520 ng mL–1) is the predominant arsenic species among the reducible and detectable arsenic compounds. Monomethylated arsenic (104 ng ml–1), inorganic arsenic (23 ng mL–1), and dimethylated arsenic (low ng mL–1) were also detected. The sum of the concentrations of these arsenic species accounts for only 39% of the total arsenic in the sample.On leave from Department of Chemistry, Indian Institute of Technology, New Delhi, India  相似文献   
12.
13.
Field and laboratory studies were conducted to investigate the persistence of chlordane in the aquatic and terrestrial environment. The laboratory data show that the transformation and loss of the chlordane constituents is dependent on soil characteristics. The overall rate of loss is also dependent on the depth of application, being significantly lower at greater depths. The field data show a strong correlation between urban development and residue concentration levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号