首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13651篇
  免费   140篇
  国内免费   98篇
安全科学   341篇
废物处理   599篇
环保管理   1416篇
综合类   2620篇
基础理论   3452篇
环境理论   10篇
污染及防治   3706篇
评价与监测   877篇
社会与环境   815篇
灾害及防治   53篇
  2022年   122篇
  2021年   93篇
  2020年   86篇
  2019年   110篇
  2018年   218篇
  2017年   219篇
  2016年   321篇
  2015年   248篇
  2014年   334篇
  2013年   910篇
  2012年   392篇
  2011年   606篇
  2010年   473篇
  2009年   499篇
  2008年   655篇
  2007年   624篇
  2006年   552篇
  2005年   472篇
  2004年   420篇
  2003年   464篇
  2002年   442篇
  2001年   578篇
  2000年   397篇
  1999年   235篇
  1998年   176篇
  1997年   169篇
  1996年   180篇
  1995年   205篇
  1994年   170篇
  1993年   131篇
  1992年   162篇
  1991年   155篇
  1990年   162篇
  1989年   159篇
  1988年   115篇
  1987年   109篇
  1986年   89篇
  1985年   112篇
  1984年   114篇
  1983年   104篇
  1982年   104篇
  1981年   100篇
  1980年   80篇
  1979年   84篇
  1977年   80篇
  1976年   77篇
  1975年   72篇
  1974年   74篇
  1973年   80篇
  1971年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
The relationships between the dynamics of environmentally and chemically stressed populations and indicators of the effects of the stressor are explored in a model framework. The physiologically structured population, represented by a system of McKendrick–von Foerster hyperbolic partial differential equations, includes the dynamics of numerous individuals distinguished by ecotype. Chemical uptake of nonpolar narcotics is modeled by first order kinetics. Classical methodologies, frequency analysis and phase space reconstruction, are explored in a search for indicators of magnitude of stress. When these techniques proved generally unsuccessful for the objective of indicator selection in our model setting, summary statistics, as related to bifurcation diagrams, were constructed and appear more useful as indicators. It is concluded that physiological structures generally lead to more feasible measurable indicators of magnitude of stress than do specifics of population dynamics.  相似文献   
102.
The genetic population structure of the recently introduced Asian clam, Potamocorbula amurensis, in San Francisco Bay was described using starch gel electrophoresis at eight presumptive loci. Specimens were taken from five environmentally distinct sites located throughout the bay. The population maintains a high degree of genetic variation, with a mean heterozygosity of 0.295, a mean polymorphism of 0.75, and an average of 3.70 alleles per locus. The population is genetically homogeneous, as evidenced from genetic distance values and F-statistics. However, heterogeneity of populations was indicated from a contingency chi-square test. Significant deviations from Hardy-Weinberg equilibrium and heterozygote deficiencies were found at the Lap-1 locus for all populations and at the Lap-2 locus for a single population. High levels of variability could represent a universal characteristic of invading species, the levels of variability in the source population(s), and/or the dynamics of the introduction. Lack of differentiation between subpopulations may be due to the immaturity of the San Francisco Bay population, the general purpose phenotype genetic strategy of the species, high rates of gene flow in the population, and/or the selective neutrality of the loci investigated.  相似文献   
103.
104.
Recent drinking water regulations have lowered the disinfection by-product standards as well as added new disinfection by-products for regulation. Natural organic matter (NOM) plays a major role in the formation of undesirable organic by-products following disinfection/oxidation of drinking water. It is suspected that most precursors to disinfection by-products are humic, although nonhumic substances are also suspected of contributing to these by-products. Many of the disinfection by-products have adverse health effects in humans (i.e., carcinogenic or mutagenic effects). The primary chlorinated disinfection by-products of concern include trihalomethanes, haloacetic acids, and haloacetonitrile. Fluorescence spectroscopy was used to study humic and fulvic acids. The two fractions of humic substances, humic and fulvic acids, were characterized by a double-peak phenomena in an overlapping fluorescing region. Disinfection by-product formation potentials of humic and fulvic acids have been correlated with total organic carbon, UV absorbance at 254 nm, specific absorbance and fluorescence. River humic and fulvic acid was found to have the highest reactivity to disinfection by-product formation as compared to soil and peat humic and fulvic acid. Fluorescence spectroscopy has shown to be a rapid and predictive tool for disinfection by-products formation potential of humic and fulvic acids.  相似文献   
105.
Forchhammer  K.  Böck  A. 《Die Naturwissenschaften》1991,78(11):497-504
The importance of selenium as an essential trace element has progressively emerged during the last years due to the analysis of selenium deficiency diseases and to the identification and characterization of a number of selenoenzymes. Selenium is incorporated in the catalytic site of the enzymes as an integral selenocysteine residue. The pathway of selenocysteine biosynthesis and incorporation has been elucidated recently for Escherichia coli. This article presents an overview on these subjects and describes the mechanisms which confer selenocysteine specificity in the framework of protein biosynthesis. In addition, some considerations concerning the phylogeny of selenocysteine incorporation are presented and a model for the evolution of the selenocysteine pathway is proposed.  相似文献   
106.
107.
This study uses an integrative approach to study the water-quality impacts of future global climate and land-use changes. In this study, changing land-use types was used as a mitigation strategy to reduce the adverse impacts of global climate change on water resources. The climate scenarios were based on projections made by the Intergovernmental Panel on Climate Change (IPCC) and the United Kingdom Hadley Centre's climate model (HadCM2). The Thornthwaite water-balance model was coupled with a land-use model (L-THIA) to investigate the hydrologic effects of future climate and land-use changes in the Ohio River Basin. The land-use model is based on the Soil Conservation Service's curve-number method. It uses the curve number, an index of land use and soil type, to calculate runoff volume and depth. The ArcView programming language, Avenue, was used to integrate the two models into a geographic information system (GIS). An output of the water-balance model, daily precipitation values adjusted for potential evapotranspiration, served as one of the inputs into the land-use model. Two watersheds were used in the present study: one containing the city of Cincinnati on the main stem of the Ohio River, and one containing the city of Columbus on a tributary of the Ohio River. These cities represent two major metropolitan areas in the Ohio River Basin with different land uses experiencing different rates of population growth. The projected hypothetical land-use changes were based on linear extrapolations of current population data. Results of the analyses indicate that conversion from agricultural land use to low-density residential land use may decrease the amount of surface runoff. The land-use practices which generate the least amount of runoff are forest, low-density residential, and agriculture; whereas high-density residential and commercial land-use types produce the highest runoff. The hydrologic soil type present was also an important factor in determining the amount of runoff and non-point-source pollution. A runoff-depth matrix and total nitrogen matrix were created for Cincinnati and Columbus to describe possible land-use mitigation measures in response to global climate change. The differences in Cincinnati and Columbus were due to differences in geographic location, air temperature, and total runoff. The results of this study may be useful to planners and policy makers for defining the possible impacts of future global climate and land-use changes on water resources.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号